
Distributed multicast tree generation with dynamic group membership

Frank Adelsteina, Golden G. Richard IIIb, Loren Schwiebertc,*

aOdyssey Research Associates, Ithaca, NY 14850, USA
bDepartment of Computer Science, University of New Orleans, New Orleans, LA 70148, USA

cDepartment of Computer Science, Wayne State University, 5143 Class Avenue, Detroit, MI 48202-3929, USA

Received 26 February 2002; revised 28 August 2002; accepted 10 October 2002

Abstract

As group applications have become more prevalent, efficient network utilization becomes a growing concern. Multicast transmission may

use network bandwidth more efficiently than multiple point-to-point messages, however, creating optimal multicast trees is prohibitively

expensive. For this reason, heuristic methods are generally employed. These heuristics are often based on a Steiner tree approach, which is

known to produce multicast trees that achieve an efficient use of network resources. Many such algorithms, both centralized and distributed,

have been proposed to generate ‘good’ multicast trees. Even these heuristics typically have significant execution times, however, so changes

to the initial group of multicast participants during generation of the tree is likely. Furthermore, periodic rebuilding of multicast trees or sub-

trees has been proposed to improve the efficiency of these trees as the group membership evolves. Changes in group membership are also

possible during this rebuilding process. Existing algorithms, however, either do not support changes to the multicast group during building of

the tree or they impose unrealistic restrictions, such as no overlapping modifications or regeneration of the tree after every change. These

restrictions prevent the use of such algorithms in many situations, e.g.; networks with mobile hosts. To remedy this, we propose an efficient

distributed algorithm that supports dynamic changes to the multicast group during tree building and allows concurrent join/leave operations.

In this paper, we present the algorithm, a proof of correctness, and detailed simulation results.

q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Multicast protocols; Dynamic multicast groups; Distributed Steiner algorithms; Mobile networks

1. Introduction

Networked multimedia applications that use multicast

communication, such as distance learning, cooperative

design tools, web-based broadcasts, and videoconferencing,

are growing in popularity. These applications, which are

often long-lived, place high demands on the underlying

communication network, and often have a dynamic set of

participants (called a multicast group). Furthermore, as the

size of the multicast group for an application increases,

efficient network utilization becomes more important. An

important aspect of supporting a multicast session is

building an efficient multicast tree, which defines the

communication routes for the participants based on the

underlying network topology.

Generation of optimal static multicast trees, which can be

modeled as the Steiner Tree problem, has been shown to be

NP-complete [12], so heuristic solutions are employed.

Algorithms for generating the multicast tree typically

balance ‘goodness’ of the generated tree, execution time,

and storage requirements. Another distinguishing character-

istic for tree generation algorithms is centralized versus

distributed control. Centralized algorithms require less

coordination and tend to be simpler, but the coordinating

site can become a bottleneck and is a single point of failure.

Generally, centralized algorithms also take longer to execute

than distributed algorithms. Distributed algorithms can run

more quickly and be more fault-tolerant, but they tend to

have higher communication overhead and are more complex.

In real networks, a static group membership cannot be

assumed. To be widely applicable, a multicast tree building

protocol must allow new group members to join and allow

existing group members to leave. Building efficient multi-

cast trees for applications with a dynamic multicast group is

very difficult, since changes to the multicast group can occur

0140-3664/03/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 14 0 -3 66 4 (0 2) 00 2 39 -6

Computer Communications 26 (2003) 1105–1128

www.elsevier.com/locate/comcom

* Corresponding author. Tel.: þ1-313-577-5474; fax: þ1-313-577-6868.

E-mail addresses: loren@cs.wayne.edu (L. Schwiebert), fadelstein@

oracorp.com (F. Adelstein), golden@cs.uno.edu (G.G. Richard).

http://www.elsevier.com/locate/comcom

even during generation of the tree. To be effective,

algorithms for building multicast trees must generate correct

trees quickly even when multiple changes in the multicast

group occur concurrently.

When nodes join or leave a multicast session, the

efficiency of the tree, relative to an optimal tree, tends to

degrade. In general, more membership changes increase the

degradation of the multicast tree. This occurs because the

structure of the tree is based on the group members and late

additions to the group may have been better supported with a

different tree structure. Further, some paths in the tree might

have been chosen to accommodate deleted nodes. For long-

running applications or applications with strict resource

bounds, changes to the multicast group can degrade perfor-

mance to the point where the current tree is too inefficient to

support the application or consumes excess network

bandwidth. When a multicast group changes significantly,

it may be desirable to rebuild the tree or at least a degraded

subtree. If the tree is rebuilt, the algorithm for generating the

multicast tree must execute quickly while dealing with

membership changes during regeneration. Future networks

will require this support at least as much as present-day

networks. For example, a network that includes mobile hosts

is likely to see more group changes, as the mobile hosts move

among base stations. Hence, the quality of the multicast tree

can degrade more quickly and the benefits of periodically

rebuilding the multicast trees will be more noticeable. A tree-

building algorithm may also be used by self-healing

protocols for recovering from network faults.

A network is a dynamic distributed environment, so

serializing changes to the multicast group can have a

prohibitively high overhead when it is even possible. In

practice, assuming the multicast group membership does not

change during the multicast tree setup or rebuild could result

in incorrect trees. In general, the protocol cannot prevent

concurrent changes to the multicast group, so protocols for

use in real networks must be able to support these changes.

For this reason, supporting concurrent updates to the group

membership is very important. Previous work in this area

has focused on minimizing the execution time of the tree

construction algorithm or producing high-quality trees. To

our knowledge, no research has been done on supporting

concurrent changes to the multicast group during execution

of the algorithm. Our distributed algorithm efficiently

supports overlapping join and leave requests during

generation of the multicast tree. This makes our algorithm

suitable for a wide variety of settings, including networks

with mobile hosts.

The rest of the paper is organized as follows. Section 2

presents background information, including the system

model, problem statement, and a discussion of related work.

Section 3 presents the proposed algorithm. A correctness

argument is presented in Section 4. Section 5 describes our

detailed simulation study and presents the results of these

simulations. Finally, Section 6 concludes the paper with a

discussion of future research directions.

2. Background

2.1. Related work

Multicast protocols define how multicast groups are

maintained and the route each message takes to reach all

members of the group [10,16]. Multicast protocols currently

in use, such as the Distance Vector Multicast Routing

Protocol (DVMRP) [17,24], which is used for the backbone

of the Internet Multicast Backbone (MBONE), rely on flood

and prune mechanisms to maintain multicast group

membership. It is generally acknowledged that this

approach generates too much network traffic for deployment

in large networks when the set of participants is relatively

sparse. As the demand for collaborative applications grows,

an increase in multicast traffic is expected. More efficient

use of the network bandwidth will be required to support

these group applications. For this reason, we review only

scalable protocols in this paper. In other words, we consider

only protocols that do not rely on flood and prune

mechanisms to build and maintain the multicast tree.

There has been considerable work on multicast route

selection. Most of the work, both centralized and distrib-

uted, falls into one of three categories: Steiner trees, source-

based routing, or center-based routing. Steiner tree-based

algorithms produce efficient trees. Because the Steiner tree

problem is NP-Complete, heuristics are used to generate

good rather than optimal trees [26]. These algorithms

generally use fewer network resources than the other two

approaches, especially when there is a single source.

Source-based schemes also build a tree rooted at each

source, but do not use Steiner-tree heuristics. The generated

trees tend to be less efficient, but the algorithms have

reduced complexity or are easier to implement in a

distributed environment. Center-based approaches are

most appropriate when there are multiple sources in the

multicast group. In this case, all the receivers of the group

are part of the multicast tree and sources are optionally

members. This approach has been proposed for use in both

the Core-Based Tree (CBT) [4,5,6]. and Protocol Indepen-

dent Multicast-Sparse Mode (PIM-SM) protocols, where the

center is called the core or the rendezvous point,

respectively. A node in the network is chosen as the center

and the sources forward messages to the center, where all

multicast communications originate. Since all sources must

transmit through the center, traffic concentrations can be

high. In addition, the resulting multicast tree is likely to be

less efficient for each session than separate multicast trees.

Steiner tree approaches also have some drawbacks, such as

inefficient use of the network resources if multiple multicast

trees exist simultaneously. In fact, the best choice of a tree-

building approach remains an area of active research. The

algorithm in this paper focuses on an important problem for

Steiner tree-based algorithms; however, we expect the ideas

in this paper to be extensible to other approaches to building

multicast trees. This paper assumes that the multicast tree

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281106

(or subtree) is being built (or rebuilt) from a given root node.

This generalizes to all three classes of protocols described

above, although some changes may be required to efficiently

support source-based tree and center-based tree approaches.

Doar and Leslie [11] support using a ‘naı̈ve’ approach to

creating the multicast tree, which takes the union of all

minimum cost paths from the source to the destinations.

Simulations show that their trees generally have efficiencies

within twice the optimal cost. Doar and Leslie argue that the

simplicity of their approach compensates for generation of

sub-optimal trees. They also point out that frequent

multicast group changes can quickly degrade a near-optimal

tree, while their algorithm is more resilient to changes.

Although their algorithm exhibits good performance, it may

not be well suited for all environments. For example, Doar

and Leslie point out that when many nodes leave the

multicast group, the performance of a multicast tree, relative

to an optimal multicast tree, tends to degrade [11]. Our

algorithm is suitable for such situations, since it could be

used by a protocol that partially rebuilds a multicast tree.

Shaikh et al. [22] present a multicast route selection

algorithm that requires no global cost information, while

utilizing a localized, greedy approach. Its performance is

sometimes worse than that of the global algorithms, but

generally produces good trees. Although only localized

information is required, the algorithm adds nodes to the

multicast tree sequentially, so the algorithm is not

completely distributed.

An approach, proposed by Im et al. [13], uses a delay-

constrained algorithm that requires N rounds to construct a

multicast tree with N receivers. The algorithm proceeds by

adding the closest receiver to the existing multicast tree in

each round. The authors mention the need for a tree-building

algorithm that executes quickly. The need for supporting a

dynamically changing network topology is also discussed.

However, the authors assume a static multicast group during

the multicast tree setup. Chakraborty et al. [9] investigate

the construction of an optimal Steiner tree with dynamic

joins and leaves. However, their algorithm requires that the

joining and leaving times of all participants is known in

advance. Kim et al. [14] presents a protocol for maintaining

dynamic multicast trees for loosely coupled multimedia

conference applications. Their protocol handles joins and

leaves in a manner similar to PIM-SM. The paper does not

discuss issues related to concurrent changes in the multicast

group. Tsukada and Takai [23] point out that multiple

multicast groups may be active at the same time, so there are

advantages to arranging these multicast trees to distribute

the overhead across the network. They then discuss an

algorithm to generate multiple Steiner trees to achieve this

goal and also extend this algorithm to support dynamic

group membership.

Ryu et al. [19] propose techniques for supporting dynamic

changes in ATM multicast groups. Their algorithm assumes

an initial multicast tree and handles dynamic changes that

occur during the lifetime of the multicast connection.

The multicast tree is built by repeatedly selecting the

minimum cost path from the current tree (initially, just the

source) to destinations that are not yet connected to the tree.

It prunes leaf nodes that depart, but does not reroute existing

connections based on late adds or deletes. Rerouting is

avoided because of the complexity of maintaining in-order

delivery of cells over an ATM connection while modifying

the path. The algorithm also uses the probability of nodes

joining or leaving the multicast group to design trees that

facilitate the sharing of paths and that produce a relatively

large number of leaf nodes. The algorithm is centralized and

assumes knowledge of all multicast branch points in the

network. The authors also assume a static multicast group

during the multicast tree setup.

Bauer and Varma [8] propose a distributed algorithm to

establish a multicast tree in a point-to-point network using

shortest path heuristics (SPH) and Kruskal-based shortest

path heuristics (K-SPH). Only members of the multicast and

nodes in the neighborhood of the multicast tree participate

in this algorithm. Their algorithm builds the tree from

‘fragments’, initially consisting of just the individual

multicast nodes. These fragments combine with each other

to form new fragments, with a single node assigned as the

leader of each fragment. Each leader runs a distributed

algorithm that is either in a discovery phase or in a

connection phase. The discovery step uses a ‘flood to N’

approach to find out which nodes are close to it. It also

propagates information about the fragment leader to nodes

within the fragment and sends updated shortest path

information from each node to the fragment leader. In the

connection step, each fragment picks a ‘preferred fragment’

and attempts to negotiate a merger with it. Nodes in the

discovery step respond to a request to merge with a busy

reply. If the merger succeeds, the fragments are combined

and the leader with the lowest index becomes the leader of

the new fragment. This process continues until there is a

single fragment remaining, containing all of the nodes

participating in the multicast. One problem with this

approach is that the ‘discovery step’ can impose a high

overhead when the network topology is relatively stable,

since the same information is recomputed many times. In

addition, a request for merging may result in a series of busy

replies followed by additional requests to the same node.

Another problem is that their tree-building algorithm does

not support changes to the multicast group during

generation of the tree.

Raghavan et al. [18] propose a similar algorithm for

restructuring an existing multicast tree or a subtree of the

multicast tree. Rather than minimizing the resource

requirements of the multicast tree, their protocol attempts

to minimize the delay of the resulting multicast tree. This

is beneficial for many multicast trees for voice or video

applications. When changes to a subtree degrade the

performance of the subtree to the point where it can no

longer maintain the required quality of service, the

subtree is rebuilt. As with Bauer and Varma’s protocol,

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1107

only one change in group membership is allowed at any

given time. That change must be processed before

another membership change can occur—a restriction

that is clearly unenforceable in a distributed network

environment. The authors also do not permit any changes

while the subtree is being rebuilt.

2.2. Problem statement

Given an arbitrarily connected communication net-

work G ¼ ðV ;EÞ; a set of multicast participants Vm # V ;

and a source Vs [Vm for the multicast, form an efficient

Steiner tree to connect the multicast nodes. All leaves of

the multicast tree are multicast nodes, although non-

participating nodes (called Steiner nodes) may be

required to form the tree. The algorithm should be

fully distributed and must handle concurrent changes to

the multicast group during execution.

2.3. System model

We assume an arbitrarily connected point-to-point

network of N ¼ kVk nodes, any of which may participate

in a given multicast session. Routing information to each

potential destination, including the next node in the route

and the associated cost, is available at each node in a

routing table or other suitable structure. The cost function

for an edge between two nodes is symmetric. The

network delivers messages in order in finite time and

does not drop or corrupt messages. We assume that no

node or link failures occur during the execution of the

algorithm. This is consistent with previous work, which

has not discussed fault tolerance. A fault tolerant solution

is the subject of on-going work.

3. The algorithm

3.1. Overview

In Section 3.2, we describe our basic distributed

algorithm for generating an efficient multicast tree.

The algorithm generates a correct tree provided the

following conditions hold:

† The initial multicast group, Vm, is known to all

participants.

† The multicast group does not change once execution of

the algorithm has begun.

Certain aspects of the basic algorithm resemble Bauer

and Varma’s [8], such as connection of fragments

through the shortest path and the concept of a preferred

node or fragment, but there are substantial differences.

To make the description of the algorithm clear, we

assume that a given set of nodes is involved in the

generation of at most one multicast tree. Concurrent

generation of multicast trees for different groups is

possible by simply tagging the various messages used in

the algorithm with a unique multicast session ID and

keeping separate data structures for each invocation of

the algorithm (Fig. 1).

Each node stores the following local variables:

ID (the node’s unique identifier)

FragID (identifier for the fragment and the fragment

leader)

F (list of multicast group members in this fragment)

Vm (nodes wishing to participate in the multicast)

Vp (the identifier of this node’s preferred fragment)

Vs (multicast source node identifier).

Fig. 1. The proposed algorithm begins with fragments each containing only a single multicast member (A). These fragments are gradually merged (B, C), with a

single member serving as the leader of each larger fragment. In the next step (not shown), the two large fragments in C will merge to form a single fragment

containing all the multicast members.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281108

Initialization. The basic algorithm performs the follow-

ing actions. In the initialization step, a separate fragment

is created for each node interested in participating in the

multicast. Initially, each node is the fragment leader of its

singleton fragment. Each fragment is aware of all other

nodes in the initial multicast group. This information is

used to build a list of other fragments (potential merge

candidates). Each node has access to internal routing

tables and can determine the cost/distance of transmitting

a message to other nodes. The fragment leader is

responsible for coordinating mergers with other fragments

and for keeping other fragment members updated regard-

ing the fragment membership and leader. Each node

forwards multicast messages to members of its fragment

to which it is directly connected (sometimes called its

‘children’).

Merge negotiation. Each node searches its routing table

to find the closest multicast participant, which becomes its

preferred node. Because fragments may not have complete

information on the other fragments in the tree, each

fragment must choose its preferred node based on local

information. This information is accumulated from the

nodes within the fragment, but nodes outside the fragment

are not queried. In the case of multiple same-cost choices,

we assume that all nodes execute the same a priori

mechanism for breaking ties, such as selecting the node

with the lowest ID.

Once a fragment leader selects a preferred node, it sends

a MERGE REQUEST message to that node and waits for a

reply. The MERGE REQUEST message contains infor-

mation that informs the recipient of the sending fragment’s

ID and the nodes at the head and tail of the shortest path

connecting these two fragments. (This allows the receiving

fragment to determine the proposed path between the two

fragments.) When a fragment leader receives a MERGE

REQUEST, if the sender is the preferred node, then it sends

an ACCEPT message and both leaders enter the connection

phase. If the sender is not the preferred node, then the

request is noted by sending a BUSY reply to the sender. If a

non-leader receives a MERGE REQUEST, it forwards the

MERGE REQUEST message to its own fragment leader for

processing and transmits a BUSY reply with its FragID

attached. This informs the sender of the MERGE

REQUEST of the identity of the fragment leader, so that

this sender will be able to correctly interpret the response

from the actual fragment leader.

A node receiving a BUSY reply to a MERGE REQUEST

will receive a MERGE REQUEST initiated by the sender of

the BUSY at a later time. In the meantime, the node

receiving the BUSY reply waits for this MERGE

REQUEST but may ACCEPT a MERGE REQUEST from

a different fragment while waiting, if the cost is less than or

equal to its current preferred fragment. This prevents

deadlocks in the protocol.

Connection phase. The purpose of the connection

phase is to join two fragments. The fragments are joined

using the shortest path between them and nodes along this

path are incorporated into the merged fragment. If any of

the nodes along the shortest path connecting the fragments

already belong to a different fragment, the merge attempt

fails.

Fragment leaders entering the connection phase per-

form the following actions, as illustrated in Fig. 2. The

fragment leader with the lower ID1 sends a CONNECT

message along the shortest path between the fragments,

from the head of the shortest path to the tail. In other

words, the path taken is from the closest node in this

fragment to the closest node in the other fragment. Upon

receiving the CONNECT message, if a node is not a

member of another fragment and is not reserved, it

tentatively becomes a member of the combined fragment

and marks itself reserved. It then forwards the CONNECT

message along the shortest path. If a node receiving a

CONNECT is reserved or already a member of another

fragment, the path connecting the merging fragments is

blocked and the merge fails. The node sends a NACK

backward along the shortest path (toward the sender of the

CONNECT message) and each node receiving the NACK

cancels its reservation and reverts to its previous status.

When the NACK arrives at the leader, it sends a NACK

to the other leader and the merge fails. The procedure

then repeats from selection of a preferred node. If the

CONNECT message reaches the tail of the shortest path

between the fragments, then MERGED messages are

sent back along the shortest path between the fragments.

Fig. 2. Two fragments merge successfully. The MERGE REQUEST from

the leftmost leader results in an ACCEPT. A chain of CONNECT messages

reserve nodes along the shortest path between the fragments, then a chain of

MERGED messages finalizes the reservations. The rightmost leader, upon

receiving the MERGED message, sends a list of its fragment members to be

incorporated into the merged fragment’s member list. The leftmost leader

node becomes the leader for the merged fragment.

1 If the root of the multicast tree is the leader of one of the two

fragments, it operates as if it were the one with the lowest node ID.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1109

The MERGED messages make the reservations permanent

(the nodes become members of the combined fragment)

and also propagate a list of Steiner node IDs back to the

leader. The leader of the combined fragment adds the new

members to the fragment membership list F.

The fragment leader with the lower node ID becomes

the leader for the new, combined fragment. The node with

the higher node ID sends its fragment membership list, via

an UPDATE TABLES message, to the new leader, which

includes these members in the new fragment membership

list. The leader of the combined fragment calculates a new

preferred node and then multicasts an UPDATE TABLES

message to the other fragment members. This message

contains the leader’s identity, the fragment membership

list F, Vm, and the suggested preferred node and its

distance. When a fragment member receives the UPDATE

TABLES message, it updates the fragment ID, updates F

and Vm, and then calculates its preferred node. If the

calculated preferred node is closer than the one suggested

by its leader, it sends an UPDATE back to the leader with

its preferred node and the cost, otherwise it sends back an

ACK message.

The fragment leader gathers the UPDATE/ACK mess-

ages and determines the closest multicast participant that is

not a member of the fragment, which becomes the new

preferred node. The leader then sends out a MERGE

REQUEST and the whole process repeats. The algorithm

terminates when the leader determines that there are no

other fragments (that is, when Vm # F). A detailed

description of the algorithm in the form of pseudocode is

available in Appendix A.

3.2. Dynamic algorithm

A practical distributed algorithm must be able to

handle changes to the multicast group during tree setup.

Two types of changes are possible: additional nodes may

wish to join the multicast group and current members of

the multicast group may wish to leave. The modifications

proposed in this section extend the basic algorithm to

support concurrent changes to the multicast group during

generation of the tree. If no dynamic changes occur, the

algorithm operates as previously described. An additional

data structure, called BUSY_Q, is required to support

dynamic changes. BUSY_Q tracks the ID of nodes to

which BUSY messages have been sent, along with the

unique identifier for the BUSY message. In addition, the

fragment members list, F, and the multicast participants

list, Vm, must be augmented to allow entries to be

marked as added and/or deleted.

Section 3.2.1 discusses late additions to the multicast

group. Section 3.2.2 describes how dynamic deletions are

performed. Section 3.2.3 discusses merging fragment

information in the presence of late adds and deletes.

3.2.1. Addition requests

Requests for entering the multicast group after the tree

setup has started are handled as follows: the new node

becomes a new singleton fragment, contacts a member of

the multicast group, and then sends a merge request to

its preferred fragment.2 In this section, we describe

how these steps are performed and how the multicast

group information is updated and consistency is

maintained.

The new node uses its own ID for its fragment

identifier and considers itself the leader of this singleton

fragment. Two possibilities exist: the multicast tree has

already been established or the tree generation is still

underway. The new node is unaware of the status of the

tree, but knows the identity of the source node, Vs.

Therefore, in either case, it sends a JOIN REQUEST

toward the multicast source. If the tree already exists (i.e.,

the protocol described in this paper to generate the tree

has already terminated), this request can be processed in

the network by an independent protocol that dynamically

adds group members to an existing tree [7,11].

Otherwise, the JOIN REQUEST must be intercepted by

our tree-building protocol and processed as a late add. As

the JOIN REQUEST propagates toward the multicast

source, it either encounters another fragment or reaches

the source. Obviously, the source always remains a member

of any valid multicast group, so the JOIN REQUEST is

guaranteed to eventually contact another multicast group

member. The multicast group member that receives the

JOIN REQUEST forwards the message to its fragment

leader, which adds this node to its multicast group

membership list, Vm. Updating the multicast group

membership list prevents the tree building algorithm from

terminating between the time when the JOIN REQUEST is

received and the new fragment merges with another

fragment in the tree. In order to ensure that all nodes in a

fragment have a consistent view of the multicast group, the

multicast membership lists are merged when fragments

merge. This procedure is discussed in Section 3.2.3.

Regardless of which group member the new node

contacts, a LATE ADD REPLY is returned to the new

node. This message contains the current list of multicast

group members known to that fragment. Upon receipt of this

reply, the new node determines its preferred node by

referencing its routing table and sends a MERGE

REQUEST to that fragment. When the preferred fragment’s

leader receives the MERGE REQUEST, it adds this node to

its copy of Vm. From this point on, the MERGE REQUEST

is processed in the same manner as all other MERGE

REQUESTs.

2 If a node that wants to join the multicast is already a member of a

fragment but is currently marked as deleted or is currently a Steiner node, it

simply sends a message to the fragment leader requesting to be a ‘full

member.’ The fragment leader forwards this information to other fragment

members the next time an UPDATE TABLES message is sent.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281110

If the preferred fragment has deleted itself from the

multicast group, then the MERGE REQUEST is processed

as described in Section 3.2.2 and the new fragment selects

another candidate as its preferred node. An exception is

whenever all multicast group members known to the

responding fragment decide to delete themselves from

the multicast group after the fragment leader responds to the

JOIN REQUEST. It is also possible that all the nodes in

the original multicast group have deleted themselves from

the multicast group. In either of these two pathological

cases, the new node sends a MERGE REQUEST to the

source and notifies the source that no member of the original

multicast group wishes to participate. Other late adds may

still be in the tree building algorithm, but the source may

begin to send at this point. Hence, it is possible that not all

nodes are in the multicast tree when the multicast begins,

however, the multicast session cannot begin if any of

the original members of the multicast group are still in

the tree-building algorithm. If any late add nodes are still in

the multicast tree-building algorithm, these nodes will

merge with the source later.

There are a few other issues that arise when allowing

late adds. First, it is possible that a fragment can ACCEPT

a MERGE REQUEST from a node that is not actually the

closest candidate, since it might not be aware of closer late

adds. However, this affects only efficiency, not correctness.

Second, a node can decide to join the multicast group at

any time, even while it is being used to form a connection

between two fragments. If this occurs, the late add waits to

see if the fragments merge before sending the JOIN

REQUEST. Finally, a connection attempt by two fragment

leaders may be blocked by a node of which neither is

aware. When the blocking node sends a NACK, its ID is

attached so the node can be added to Vm at the receiver.

This allows the blocking node to become a candidate for

preferred node.

3.2.2. Deletion requests

Delete requests can be more complicated than add

requests, since the node to be deleted may have already been

incorporated into a fragment. If the node is still a singleton

fragment, it simply sends a NOT INTERESTED response to

any MERGE REQUESTs. The node receiving the NOT

INTERESTED response to a MERGE REQUEST marks the

node as deleted in its fragment list, F, and multicast group

membership list, Vm. This is done to allow accurate

determination of the group membership list when merging

fragments, as described in Section 3.2.3.

If the node is in a fragment with more than one member,

it removes itself from the multicast group by sending a

DELETE message to the fragment leader. The deleted node

continues to handle future MERGE REQUESTs the same

way as other non-leader nodes in the fragment. If the node

that wishes to be deleted from the multicast group is the

fragment leader and there are at least two other nodes in the

fragment, it selects the member of the fragment that is

closest to the fragment leader and requests that the node

take over leadership duties via a CHANGE LEADER

message. (If there is only one other node in this fragment,

the fragment is dissolved and the other node becomes a

singleton fragment.) The closest node is selected to

minimize the disruption to the current tree structure.

After the fragment leader sends the CHANGE LEADER

message to this fragment member, it waits for either a

NACK or an ACK from this node. If a NACK is received,

the candidate node has deleted itself and another candidate

must be chosen. If there is only one other multicast group

member still in the fragment, this fragment is dissolved and

the remaining node in this fragment functions as a singleton

node. This process is repeated until an ACK is received or

the fragment is dissolved. If an ACK is received, the new

fragment leader has been ‘elected’ and pending MERGE

REQUESTs (i.e. entries in the BUSY_Q) as well as up-to-

date copies of Vm and F are forwarded to the new fragment

leader. The new leader subsequently updates other member

nodes in the fragment with an UPDATE TABLES

message.

Once the ACK has been received and the fragment leader

is changed, the fragment must be restructured so that the

root of this subtree is the new fragment leader. This could

potentially require changing the orientation of multicast tree

edges, replacing existing edges with new edges, and

modifying the set of Steiner nodes in the fragment.

Although this may create a lower cost subtree, the overhead

of restructuring could be quite expensive. Furthermore, if

additional nodes in that subtree add or delete themselves

during this restructuring, the processing becomes very

complicated. Rather than introduce this complexity and

overhead into the protocol, a simple restructuring mechan-

ism is used. When the candidate for becoming the new

fragment leader sends the ACK back to the current fragment

leader, the edges on that path are reversed. The result is that

the fragment is now rooted at the new fragment leader. A

robust fault-tolerant version of this procedure for restructur-

ing subtrees was introduced by Schwiebert and Chintalapti

[21], where it was used for restructuring CBTs.

Before a fragment is dissolved, one additional issue must

be handled. Nodes that received a BUSY response from the

dissolving fragment must be informed so they do not wait

forever. In order to track outstanding BUSY messages, an

entry is added to the BUSY_Q whenever a BUSY message is

sent in response to a MERGE REQUEST. This entry

contains the unique identifier for the BUSY message and the

ID of the recipient of the BUSY. Before the fragment is

dissolved, the leader sends FRAGMENT DISSOLVED

notifications to each node with an entry in the BUSY_Q.

Each of the FRAGMENT DISSOLVED messages carries

the unique identifier of the BUSY message so the receiving

node can determine which fragment is being dissolved

(since the original sender of the BUSY message may have

merged into a new fragment and lost the leadership role).

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1111

3.2.3. Combining fragment information

When two fragments are merged, they may have an

inconsistent view of the multicast group. Any inconsistent

information must be reconciled by the new fragment leader

before being multicast to all nodes in the newly merged

fragment. This can be done by including this information in

the UPDATE TABLES message described in Section 3.2.

Inconsistent views may be caused by several events. Late

adds are seen by a fragment when the node is merged into

the fragment, when a JOIN REQUEST is received, when a

MERGE REQUEST is received, or when a node blocks a

merge with a NACK. Deletes are seen by a fragment only

when a NOT INTERESTED reply is returned from

a MERGE REQUEST or a node in the fragment sends

a DELETE REQUEST. Finally, the BUSY_Q sets for the

two fragments must be combined.

The combined fragment list, F, is the union of the two

original fragment lists. Thus, nodes marked as deleted in

either list are marked deleted in the combined fragment list.

Similarly, nodes added to either fragment become members

of the combined fragment.

The combined multicast group membership list, Vm,

consists of the union of the multicast group membership list

in each fragment. Nodes marked as deleted in both of the

lists, or marked deleted in one list but appearing unmarked

in the other, or marked as deleted in one list but not

appearing in the other, are marked deleted in the combined

list. Nodes marked as deleted in one list but added in the

other are marked as added in the combined list. This ensures

that a node that has sent a NOT INTERESTED reply to one

fragment and a JOIN REQUEST to the other remains a

candidate for merging. If this node is in fact deleted, then a

subsequent MERGE REQUEST from the combined frag-

ment will result in a NOT INTERESTED reply and the node

will be properly deleted. Finally, the BUSY_Q set for the

combined fragment is the union of the BUSY_Q sets for the

individual fragments.

3.3. Termination condition and tree refinement

The algorithm terminates (for a particular group) when

there is only one fragment remaining, whose membership

consists of the nodes in Vm. At some point, additional

changes to the multicast group must be postponed so that

a multicast tree can be established. Otherwise, the

multicast session may be postponed indefinitely as late

adds and deletes are being processed forever. (If changes

occur this rapidly, there is little advantage in attempting to

construct a good multicast tree, since many changes will

occur after the tree is completed and it is likely that the

tree will be severely degraded within a short time period.)

This situation can be handled by bounding the number of

additions that a fragment accepts, which forces eventual

termination. Subsequent JOIN REQUESTs are then

buffered until the tree is built or processed as if the tree

has already been built. Obviously, if the number of adds is

bounded, then the number of deletes is also implicitly

bounded by kVmk.
Once the algorithm has completed, it may be beneficial

to run an optional protocol that prunes leaf nodes that

either are marked deleted or are Steiner nodes. These can

be present because of dynamic changes during execution

of the tree-building algorithm. When a node is pruned, the

algorithm will recurse up the tree and determine if the

parent of this leaf node should also be pruned. This

process repeats until a parent is found with more than one

child, or the parent is a group member, or the source node

is reached. The state information maintained by both

multicast group members and Steiner nodes may be

reduced or eliminated, depending on the needs of the

protocol that supports the multicast session after the tree

has been built. In our simulations, pruning resulted in

average savings of 6% for multicast groups with dynamic

changes. More details on the simulation study appear in

Section 5.

4. Correctness argument

In the following, we show that the algorithm produces a

correct Steiner Tree and always terminates.

Definition 1. The preferred fragment of fragment I is the

fragment J, denoted preferred(I) ¼ J, if and only if

cost(path(I,J)) ¼ min(cost(path(I,x))) for all x where

x [Vm at I.

Note that Vm is local to I, so I’s notion of preferred

fragment can change if it discovers the existence of a late

add that is closer than other nodes in Vm, or if another

fragment in Vm gets closer because of a Steiner node.

Definition 2. A pair of fragments (I, J) is a preferred pair if

and only if preferred(I) ¼ J and preferred(J) ¼ I.

Lemma 1. The algorithm produces a Steiner Tree of the

nodes in Vm.

Proof. The algorithm proceeds by merging fragments.

Initially, each fragment contains a single node, and there are

n ¼ kVmk such fragments. Obviously, there are no cycles in

the singleton fragments and each is a valid Steiner Tree.

Now consider the case of k fragments, where k , n. Of

these k fragments, two distinct fragments, F1 and F2, merge

by adding a path from one fragment to the other. No cycles

exist within F1 or F2 and there is only a single path

connecting F1 to F2. Hence, there are no cycles in the new

fragment formed by merging F1 and F2, and this combined

fragment remains a valid Steiner Tree. There are now k 2 1

fragments, all of which form valid Steiner Trees. By

induction, all fragments remain acyclic and are valid Steiner

Trees. Since the algorithm terminates when there is only

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281112

a single fragment remaining, which contains all nodes in

Vm, the final fragment is a valid Steiner Tree for the nodes in

Vm. A

Lemma 2. During the connection phase, at least one

connection succeeds.

Proof.

(1) Without loss of generality, assume fragments A and

C are closer than any other pair of fragments. If A is

aware of C, A sends a MERGE REQUEST to C. If C

sends an ACCEPT message, the pair have recognized

each other. If, due to incomplete information, C has

selected another fragment, B, then either C merges

with B in the current round (because B has already

sent an ACCEPT), or C merges with A, because B

sent a BUSY reply. Again, if A and C merge, they

have recognized each other. If C merges with B, then

it notes the request from A, sends a BUSY reply, and

merges with A during the next round. Recall that the

distance from A to C is less than the distance

between any other pair of nodes, so even if C and B

merge, when C and B combine their pending merge

list, A is closer to the B–C fragment than any other

fragment. Therefore, the two closest fragments find

each other and initiate a merge. If A is unaware of C,

it will send a MERGE REQUEST to another node,

D. This will succeed unless A receives a BUSY reply

from D. In this case, if C sends a MERGE

REQUEST then A can ACCEPT. Otherwise, D

merges with some other node, since that other node

is closer to D than A is.

(2) Clearly, there is always some pair of fragments that

are closest (ties are broken by an a priori ordering).

Thus, this closest pair always attempts to merge,

based on the above argument in (1), after some

sequence of rounds in which at least one merger

takes place.

(3) The only problem ignored above is if the connection

phase does not succeed because the path between the

two joining fragments routes through some interven-

ing fragment. First, we consider the case without any

late adds.

Case 1. No late adds. Refer to Fig. 3. Assume fragment

A wants to merge with fragment C and node B, which

lies between A and C, belongs to another fragment and

is a Steiner Node. Since B was not originally in Vm,

neither A nor C know about B. If they were aware of B,

then B would be in the preferred fragment for both A

and C.

Not only does node B lie between A and C, but since it is a

Steiner Node, it must lie between two nodes within its own

fragment, say nodes A0 and C0 (which are in Vm), where

nodes A0 and C0 are a preferred pair. Therefore, by

Definitions 1 and 2:

cost(path(A0,C0)) ¼ min(cost(path(A0,x))) for all x, or

alternatively,

cost(path(A0,C0)) ¼ min(cost(path(y,C0))) for all y

AND

cost(path(A,C)) ¼ min(cost(path(A,x))) for all x, or

cost(path(A,C)) ¼ min(cost(path(y,C))) for all y.

But, B is an element of path(A,C) and path(A0,C0). It can be

thought of as a 4-way intersection with B as the common

node, as illustrated in Fig. 3.

Assume cost(path(x,B))lx ¼ (A,A0,C,C0) is not equivalent,

for all given values of x. Without loss of generality, also

assume that cost(B,C) is the minimal cost of the group.

Additionally, without loss of generality, assume the

ID(C) , ID(C0). In the case where cost(path(x,B))lx ¼ (

A,A0,C,C0) is equal for all given values of x, since C has the

lowest ID number, it is preferred by all other fragments and

this case reduces to the case where the distances are distinct.

Therefore, without loss of generality, we assume that not all

the costs are equal. This implies that C is the preferred

fragment for A. It also means that C is the preferred

fragment for A0, not C0, since cost(path(B,C)) #

cost(path(B,C0)), which means cost(path(A0,C)) #

cost(path(A0,C0)). This means that A0 tries to merge with C

instead of with C0. Thus A0 and C0 cannot already be merged,

so B is not a Steiner Node for an A0 –C0 fragment, which

implies B is still available and the connection does not

block.

Since C only ACCEPTs a MERGE REQUEST from a single

fragment per round, any other fragment(s) that send

MERGE REQUESTs receive a BUSY response and do

not attempt to connect to C, therefore the path to C is not

blocked. Hence, without late adds the connection phase

always succeeds.

(4) Now we consider the case in which late adds occur.

Case 2. Late adds occur. The late add case is the only case

in which a connection attempt can fail. Again, referring to

Fig. 3. Two merging fragments collide.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1113

Fig. 3, this time we assume node B is a late add, unknown to

A and C. (Note that late adds that are not in the path between

two merging fragments cannot block a connection for those

fragments, and are thus not considered.) In this case, A

sends a CONNECT message to C and B is on the path of this

message. Since B has not agreed to merge with A or C, B

rejects the CONNECT message by sending a NACK back to

A. When A receives the NACK, A forwards the NACK

directly to C, informing C of the failed connection. Thus, the

connection is blocked temporarily.

At this point, there are two possibilities. One is that B

already knew about the existence of A and C when it

received the list of multicast members, in response to its

JOIN REQUEST. The other is that B does not know about

A or C because they are late adds themselves and

contacted a different initial node with their JOIN

REQUESTs. If B knows about A and C, then B chooses

the closer of A and C as its preferred node (in this round or

a later round), and sends a MERGE REQUEST to the

closer one. Without loss of generality, assume that node is

C. Since B is closer to C than A is, C accepts B’s proposal

and merges with B.

If A and C were not included in Vm for node B, B then

adds them to its copy of Vm and recalculates its preferred

node and then proceeds as above, i.e.; attempts to merge

with the closer node. Also, note that upon receiving a

NACK from B, node A then becomes aware of B’s

membership in Vm and B becomes the preferred node for

A. At this point, A no longer ACCEPTs any MERGE

REQUESTs from C, since C is farther away than B, and

sends C a BUSY reply. Although C is unaware of B

initially, B is added into Vm at node C when C receives

the NACK forwarded from A (and notices B is not in

Vm), at which point B is added to Vm and becomes the

preferred fragment for C. Having received a BUSY

response from A, C is free to ACCEPT a MERGE

REQUEST from B.

In either case, B merges with C, as well as with A,

progress is made after the failed connection, and the process

then continues the same as in the case without late adds.

Therefore, even when late adds are allowed, at least one

connection succeeds. Thus, in each round at least one

connection succeeds.

Theorem 1. The dynamic algorithm always terminates with

a correct Steiner tree.

Proof. We assume that a finite number of changes occur.

The number of changes can be limited as described in

Section 3.3. From Lemma 1, the resulting tree is free of

cycles—it is a valid Steiner tree. From Lemma 2, at least

one pair of fragments merges each round, reducing

the number of fragments by one. Since the

number of fragments is finite, the algorithm eventually

terminates. A

5. Simulations

A simulator, mcSIM, was written in C using version

18 of CSIM [20]. mcSIM is a detailed, realistic

simulation of the protocol, which simulates the protocol

running on every node in the network. Each node

operates in a truly distributed fashion. The only sharing

of information among nodes is through the exchange of

messages. Nodes not interested in the multicast run a

low-cost Steiner code that just forwards messages and

consumes few resources. Any ‘intelligence’ required in

the protocol occurs in only group member nodes. The tree

construction protocol terminates when the multicast tree

is built.

The simulation suite includes a network generation

program called Bessie3 [3] that generates and displays

network topologies as described by Waxman [25] and

Doar and Leslie [11]. Bessie also provides an improved

edge model to provide greater control over the generated

topologies. When the simulation finishes, mcSIM

writes an output file that can be displayed by Bessie.

Bessie verifies the integrity of the generated multicast

tree and provides various statistics, such as overall tree

cost.

The simulator has been stress-tested with thousands of

simulations run in which the number of changes to the

network was unbounded. Although testing does not

guarantee correctness, examination of the interaction

among the nodes during these tests shows that even

extremely rare interactions were encountered in at least

some of the simulations and were properly handled.

Messages sent to nodes must pass through all of the

intermediate nodes defined in the network topology. By

running extensive simulations, we were able to verify the

protocol’s correct behavior in the presence of race

conditions and unexpected messages. This is especially

important when simulating the effects of dynamic

changes to the multicast group, because it is nearly

impossible to anticipate all the possible interactions that

can occur as a result of these spontaneous changes. In

addition, as a debugging tool, a watchdog process runs in

the background to warn of deadlock and starvation. This

was useful during testing to identify implementation

bugs.

The protocol runs on every node in the network. Each

node has a fixed probability of changing its status with

regard to participating in the multicast. Specifically,

nodes that are not participating in the multicast can

‘decide’ to join at any time. Similarly, nodes that are

participating in the multicast, or in the process of joining

the group can decide to remove themselves from the

multicast. There is no constraint on the number of times

an individual node may choose to join or leave the

multicast. The ratio of joins to leaves was initially set at

3 The name ‘Bessie’ is a tribute to the blues singer Bessie Smith.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281114

4:1, but was varied from 9:1 to 1:1 in subsequent test

runs. To prevent network instability, there is a system-

wide limit on the total number of multicast

group changes. By default, it is 100 changes, although

that is a run-time configurable parameter. Although these

limits were imposed on the runs shown in the

simulations, no such limits were used for the stress tests.

In addition, we have an implementation of the naïve

approach as described by Doar and Leslie [11] to serve as

a comparison. We have also compared our dynamic

algorithm with a version that defers multicast group

changes until the multicast tree is built and then

sequentially performs and the late additions and deletions.

This is done to quantify the advantages of incorporating

these changes while building the multicast tree. The other

comparable algorithms [7,8] do not support dynamic

changes, so a comparison with those algorithms is not

possible. In addition, implementing either of these two

protocols is likely to be a significant undertaking. For

example, the simulations conducted by Bauer and Varma

used only a partial implementation of their protocol [7].

The Doar and Leslie algorithm is run on the final set of

multicast group members in the networks. Since the path

from each node to the root in Doar and Leslie is

independent of every other node participating in

the multicast, the exact sequence in which late additions

(joins) and deletions (leaves) occur is irrelevant to the

Doar and Leslie algorithm. Hence, the output of mcSIM

consisting of the network topology and the final list of

nodes in the multicast is used as the input for the Doar

and Leslie algorithm.

Note that we are only comparing the final costs of the

multicast trees, not the computational overhead or running

time of the two different methods. Our protocol is

implemented in a simulator with low-level features such

as message passing and message parsing, and handles

dynamic changes in the multicast group during the

simulation. Our implementation of Doar and Leslie is a

centralized algorithm that simply computes the cost of the

final tree. Thus, the execution time of the two protocols is

too dissimilar for any meaningful analysis to be made. A

careful comparison of our protocol and Bauer and Varma’s

protocol, however, shows that our protocol requires fewer

messages, partially due to Bauer and Varma’s use of

localized flooding. Our dynamic protocol uses larger

messages than Bauer and Varma’s protocol in order to

support the dynamic group membership, however, the basic

version of our protocol can support the same assumptions as

Bauer and Varma’s protocol with shorter messages.

5.1. Simulation results

The results of the simulation study are shown in Tables

1–7, in which mcSIM is compared with Doar and Leslie’s

protocol. We use their protocol as a baseline for

comparison because their algorithm also handles dynamic

changes and has been shown to produce good results for

many cases. Each row in each table is derived from

Table 1

Relative performance with average degree ¼ 3, 10% multicast, no late

joins/leaves

No. of nodes Worst

case

(%)

Average

case

(%)

95% Conf.

interval

(%)

Best

case

(%)

50 24.73 24.85 8.87 82.37

100 2.17 27.78 5.96 54.96

200 8.33 26.92 5.86 76.61

500 11.26 24.50 3.11 41.31

Table 2

Relative performance with 200 nodes, average degree ¼ 3, no late

joins/leaves

% Multicast Worst

case

(%)

Average

case

(%)

95% Conf.

interval

(%)

Best

case

(%)

5 2.12 29.36 8.21 87.27

10 8.33 26.92 5.86 76.61

20 11.02 21.52 2.78 37.91

25 8.68 23.27 3.30 36.82

30 7.95 20.67 3.08 36.87

Table 3

Relative performance with 200 nodes, 10% multicast, no late joins/leaves

Average

node

degree

Worst

case (%)

Average

case (%)

95% Conf.

interval (%)

Best

case

(%)

3 8.33 26.92 5.86 76.61

4 11.61 33.09 5.11 70.95

5 17.83 38.51 5.81 73.43

6 8.50 44.92 5.26 69.79

Table 4

Relative performance with average degree ¼ 3, 10% multicast, join/leave

ratio ¼ 4:1

No. of

nodes

Worst

case

(%)

Average

case

(%)

95% Conf.

interval

(%)

Best

case

(%)

50 216.33 19.18 8.50 82.37

100 1.26 13.37 2.90 31.56

200 20.23 16.70 3.50 34.23

500 8.88 17.48 2.95 40.23

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1115

the results of runs on 25 random networks. For each

experiment we varied one parameter (e.g.; number of nodes

in the network, node degree, etc.) while fixing the

remaining parameters. The study encompasses over 600

individual simulation runs. Although we attempted to be as

thorough as possible, a complete study of all possible

combinations of parameter values in a four dimensional

space would have been prohibitively expensive. However,

our simulation runs showed consistent behavior over a

wide range of parameter values, which we believe indicates

that the following results are indicative of the general

performance of our algorithm.

The results in Tables 1–3 show the percentage

improvement of our protocol over the baseline averaged

over 25 random networks per row. These three tables

present the performance of our basic algorithm, a

situation with no late joins or leaves. In Table 1,

networks with 10% multicast nodes and an average of

three links per node were simulated for varying network

sizes. The results show that, in most cases, our protocol

generates significantly better trees; in some cases, as

much as 80% better, with an average improvement of

about 25%. In Table 2, the network size is fixed at 200

nodes and the number of multicast members is varied.

Although the average improvement of our protocol

decreases as a larger percentage of nodes in the network

become group members, our protocol consistently yields

more efficient multicast trees. In Table 3, the average

degree of nodes in the network is varied. Across

node degrees of 3–6, our protocol generates trees

that are, on average, 35% more efficient than trees

produced by the baseline algorithm. As the average node

degree increases, our protocol generates correspondingly

better multicast trees relative to the baseline. This is

because we are better able to exploit the increased

number of shared paths in the network to build better

trees.

In Tables 4–6, late joins and leaves are introduced,

with a join/leave ratio of 4:1. In other words, 80% of the

changes to the multicast group are late adds and 20% are

deletes. The rate at which adds and deletes occur is

uniformly distributed throughout each simulation run.

Some changes occur at the beginning of the simulation,

some at the end, and most in the middle of the

simulation. This pattern of changes mimics the behavior

expected in a real network environment—changes occur

in the multicast group membership in a completely

distributed manner. Recall that at most 100 changes to

the multicast group are simulated, using a random choice

of type of change and node to change. This limit is set

intentionally high to allow for more changes than

would normally be expected. Other than the requirement

that the source of the multicast tree is not permitted to

delete itself, there is no restriction on which nodes can

add themselves or delete themselves. As stated

earlier, a node might change its membership

status multiple times during the building of the multicast

tree.

The results for these simulations are consistent with

the results when there are no dynamic changes to the

group membership. In Table 4, the size of the network is

varied from 50 to 500 nodes. Table 4 shows that

although the relative improvement of our algorithm is not

as great as shown in Table 1, our protocol still generates

trees with an average improvement of 15–20% over the

baseline protocol. In Tables 5 and 6 we fix the number

of nodes in the network at 200 and vary the number of

nodes initially in the multicast group and the average

node degree, respectively. Table 5 displays results similar

to the relative performance shown in Table 2. Although

Table 5

Relative performance with 200 nodes, average degree ¼ 3, join/leave

ratio ¼ 4:1

% Multicast Worst

case

(%)

Average

case

(%)

95% Conf.

interval

(%)

Best

case

(%)

5 1.05 16.72 4.39 55.89

10 20.23 16.70 3.50 34.23

20 5.27 12.94 1.87 21.86

25 7.17 14.82 1.65 24.09

30 7.34 14.79 2.07 24.72

Table 7

Relative performance with 200 nodes, 10% multicast, average degree ¼ 3,

varying add/delete ratio

Join/leave

ratio

(%)

Worst

case

(%)

Average

case

(%)

95% Conf.

interval

(%)

Best

case

(%)

90 3.21 16.69 2.54 28.44

80 20.23 16.70 3.50 34.23

70 2.15 13.8 3.06 29.27

60 3.75 13.76 2.47 22.99

50 27.52 11.66 3.38 24.00

Table 6

Relative performance with 200 nodes, 10% multicast, join/leave ratio ¼ 4:1

Average

node

degree

Worst

case

(%)

Average

case

(%)

95%

Conf.

interval (%)

Best

case

(%)

3 20.23 16.70 3.50 34.23

4 3.73 19.19 4.19 46.13

5 14.64 29.80 2.94 44.92

6 15.86 32.06 4.13 54.36

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281116

the relative improvement of our algorithm does not

decrease consistently with increases in multicast group

size, the same general trend appears. Similar to Table 3,

Table 6 shows that better trees are generated as node

degree increases. Although there are a few individual

cases where Doar and Leslie’s protocol generates a

better tree, these cases are rare and the average

performance of our protocol is very good. Since each

multicast membership change as the tree is being built

potentially degrades the quality of the tree, this is good

evidence that our protocol is resilient to these dynamic

changes.

In Table 7, the join/leave ratio is varied by

progressively reducing the percentage of changes that

are late adds. The relative performance of our

algorithm decreases as the number of deletions increases.

Because shared paths are not used by Doar and

Leslie’s algorithm, as the number of late adds increases,

its relative performance decreases. Note that it does not

make sense to have more deletes than late adds,

since this implies that if our protocol runs long enough,

there will be no remaining group members. However,

such a ratio may make sense if only a very

limited number of changes to the multicast group is

permitted.

Overall, the performance of our algorithm is signifi-

cantly better than Doar and Leslie in terms of the cost of

trees generated. In virtually all cases, our algorithm

generates substantially better trees. Substantial testing

with a large number of different networks confirms these

results.

6. Conclusion and future work

We have presented a distributed algorithm for the

construction of a multicast tree in environments in which

the multicast group membership is dynamic. Unlike

existing algorithms, nodes may join or leave the multi-

cast while the algorithm is executing, and concurrent

membership changes are permitted. The algorithm builds

correct trees and integrates dynamic changes to

produce high-quality trees even in the presence of

dynamic group membership. This is accomplished with-

out a significant increase in the message complexity of

the algorithm. To be practical, a distributed

algorithm must support dynamic group membership,

since it is impossible to prevent these changes from

occurring.

This algorithm is suitable for use in many situations

that require the generation of multicast trees. Examples

of such applications include multicast groups with mobile

hosts, dynamic regeneration of subtrees that have

experienced substantial degradation due to local changes

in the multicast group, and self-healing protocols for

resolving faults in a fault-tolerant system. On the other

hand, the requirement that all participants are aware of

all the initial group members seems to preclude the use

of this protocol for IP multicasting. However, modifi-

cations of this algorithm to work in the Internet for IP

multicasting are possible. For local rebuilding of sub-

trees, especially within a network domain, knowledge of

all participants is not needed. In addition, this require-

ment of membership knowledge could be relaxed further

if information on local participants is available. This

would allow efficient construction or reconstruction of

the multicast tree, since the most important infor-

mation—the existence of neighboring participants,

would be known. Performance of this algorithm with

limited, but local, information on participants is import-

ant future work.

Because we avoid the discovery step, the message

complexity of the inter-fragment communication is lower

than the algorithm proposed by Bauer and Varma. In

practice, our algorithm should be faster because it does

not require a discovery step and cannot have loops where

MERGE REQUESTs to the same fragment are repeatedly

rejected until finally accepted. The intra-fragment com-

munication, which is used to determine preferred

fragments and maintain consistent information within a

fragment, introduces additional message overhead. Future

work includes the design of better protocols to reduce

intra-fragment communication and different network

topology models.

In this paper, we have described the protocols and

design decisions for creating a multicast tree building

algorithm that allows dynamic changes to the multicast

group. Generating trees with a distributed algorithm can

reduce execution time, especially for a large multicast

group. A detailed simulation study of the algorithm

described in this paper was conducted, which demon-

strated the advantages of our proposed protocol. This

allowed us to verify the quality of the trees generated by

our algorithm relative to those generated by the Doar and

Leslie algorithm.

Other topics for future work include extending the

protocol to incorporate fault tolerance—a topic that, to our

knowledge, has not been addressed. We will

also incorporate this algorithm into a multicast protocol

that supports dynamic trees with periodic rebuilds of locally

inefficient subtrees. This would be useful for long-running

multicast sessions with periodic changes in the multicast

group during the actual multicast session.

Acknowledgements

The authors are very grateful to Christine Richard for

editorial assistance.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1117

Appendix A

Algorithm pseudocode

Basic concepts

Vm ¼ the initial set of multicast participants. Initially,

there are kVmk fragments, each containing a single

distinct element of Vm. The algorithm terminates for

members of a particular group when F ¼ Vm: Any

message not explicitly handled is an error. State

functions are shown in italics.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281118

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1119

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281120

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1121

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281122

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1123

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281124

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1125

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281126

References

[1] F. Adelstein, F. Hosch, G.G. Richard III, L. Schwiebert, Bessie:

portable generation of network descriptions for simulation, Proceed-

ings of the Seventh International Conference on Computer Com-

munications and Networks (IC3N’98) (1998) 787–791.

[2] A. Ballardie, Core Based Trees (CBT version 2) Multicast Routing

Protocol Specification, RFC 2189, September 1997.

[3] A. Ballardie, Core Based Trees (CBT) Multicast Routing Architec-

ture, RFC 2201, September 1997.

[4] A. Ballardie, B. Cain, Z. Zhang, Core Based Trees (CBT version 3)

Multicast Routing Protocol Specification, Internet Draft draft-ietf-

idmr-cbt-spec-v3-01, August 1998.

[5] F. Bauer, A. Varma, ARIES: a rearrangeable inexpensive edge-based

on-line Steiner algorithm, IEEE Journal on Selected Areas in

Communications 15 (3) (1997) 382–397.

[6] F. Bauer, A. Varma, Distributed algorithms for multicast path setup in

data networks, IEEE/ACM Transactions on Networking 4 (2) (1996)

181–191.

[7] D. Chakraborty, C. Pornavalai, G. Chakraborty, N. Shiratori,

Distributed routing for dynamic multicasting with advance

resource reservation information, Proceedings of the 15th Inter-

national Conference on Information Networking (ICOIN’01)

February (2001).

[8] C. Diot, W. Dabbous, J. Crowcroft, Multipoint communication: a

survey of protocols, functions, and mechanisms, IEEE Journal on

Selected Areas in Communications 15 (3) (1997) 277–290.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–1128 1127

[9] M. Doar, I. Leslie, How bad is naı̈ve multicast routing?, IEEE

INFOCOM March (1993) 82–89. San Francisco, CA.

[10] M. Garey, D. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness, Freeman, San Francisco, CA,

1979.

[11] Y. Im, Y. Lee, S. Wi, Y. Choi, Delay constrained distributed

multicast routing algorithm, Computer Communications 20 (1)

(1997) 60–66.

[12] S.G. Kim, Y.-M. Choi, S.T. Kim, Y.S. Kim, A dynamic multicast tree

for loosely coupled conference, International Multimedia Conference,

Poster Paper, November 1999, Available online at http://www.kom.

e-technik.tu-darmstadt.de/acmmm99/ep/kimsanggil/.

[13] J. Lin, R.-S. Chang, A comparison of the internet multicast routing

protocols, Computer Communications 22 (2) (1999) 144–155.

[14] T. Pusateri, Distance Vector Multicast Routing Protocol, Internet

Draft draft-ietf-dvmrp-v3-09, September 1999.

[15] S. Raghavan, G. Manimaran, C. Siva Ram Murthy, A rearrangeable

algorithm for the construction of delay-constrained dynamic multicast

trees, IEEE/ACM Transactions on Networking 7 (4) (1999) 514–529.

[16] B.H. Ryu, M. Murata, H. Miyahara, A dynamic application-oriented

multicast routing for virtual-path based ATM networks, IEICE

Transactions on Communications E80-B (11) (1997) 1654–1663.

[17] H. Schwetman, CSIM: a C-based, process-oriented simulation

language, Proceedings of the 1986 Winter Simulation Conference

(1986) 387–396.

[18] L. Schwiebert, R. Chintalapati, Improved fault recovery in core based

trees, Computer Communications 23 (9) (2000) 816–824.

[19] A. Shaikh, S. Lu, K. Shin, Localized multicast routing, Proceedings of

the IEEE GLOBECOMM’95 (1995) 1352–1356.

[20] M. Tsukada, Y. Takai, Distributed algorithms for dynamic Steiner tree

problem. Information Processing Society of Japan SIGNotes Dis-

tributed Processing System, No. 095-010, 1999.

[21] D. Waitzman, C. Partridge, S. Deering, Distance Vector Multicast

Routing Protocol, RFC 1075, November 1988.

[22] B. Waxman, Routing of multipoint connections, IEEE Journal on

Selected Areas in Communications 6 (9) (1988) 1617–1622.

[23] P. Winter, Steiner problem in networks: a survey, Networks 17 (2)

(1987) 129–167.

F. Adelstein et al. / Computer Communications 26 (2003) 1105–11281128

http://www.kom.e-technik.tu-darmstadt.de/acmmm99/ep/kimsanggil/
http://www.kom.e-technik.tu-darmstadt.de/acmmm99/ep/kimsanggil/

	Distributed multicast tree generation with dynamic group membership
	Introduction
	Background
	Related work
	Problem statement
	System model

	The algorithm
	Overview
	Dynamic algorithm
	Termination condition and tree refinement

	Correctness argument
	Simulations
	Simulation results

	Conclusion and future work
	Acknowledgements
	Algorithm pseudocode
	References

