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Abstract

We present a set of library routines that allow easily parallelized graphics rendering
routines that require no communication between each parallel task, such as ray-tracing,
to be run efficiently in an environment of distributed workstations. The presentation of
the paper focuses on the problems encountered in implementing a distributed system un-
der Unix and proposes solutions to each problem. Specifically, we discuss the challenges
involved in overcoming the limits of communicating with a large number of processes in
Unix and in providing fault tolerance when using sockets. Technical aspects of the imple-
mentation and some additional problems that were encountered are discussed. Finally,
we compare the rendering times for a complex image with a renderer using the library
and show that the library routines are able to exploit much of the existing parallelism.
The library is presented using a graphics application, though the concepts are generic
enough to be of use in designing any distributed system under Unix.

Key Words: Ray tracing, distributed computing, distributed graphics, fault tolerance,
library routines.



Introduction

Motivations

Many applications in computer graphics, especially those for generating high quality
images, require a tremendous amount of computing power. Ray tracing [1] is a good
example of a technique where computation time and image quality are closely related.
Generating high-quality ray-traced images can take days or weeks of CPU time on typ-
ical single processor workstations. Algorithms without data dependencies, such as ray
tracing, can be easily parallelized since no communication or synchronization is required
between regions of the image computed by different processors.

The primary computing environment in the Department of Computer and Informa-
tion Science at The Ohio State University consists of over 200 Sun SLC workstations.
There are over two dozen file servers, set up so that there is a consistent view of files
from all machines. This kind of distributed environment makes available a tremendous

amount of raw CPU power, well suited for rendering high quality images very quickly.

Objectives

The goal was the development of a set of generic library routines that could be used by
existing renderers. In order to facilitate the incorporation of these routines into existing
code, it was desirable to minimize the modifications and limitations the library placed
on the renderer. Therefore, the library routines are responsible for acquiring remote
machines, initializing all processes on those machines, handling all data communication
and scheduling the remote processes.

Additionally, the routines must handle hardware and software failures cleanly. The
probability of machine failure increases with the number of machines, so the lack of
fault tolerance would severely limit the usefulness of the routines in even the most

stable environment. It is desirable to limit the amount of work recomputed due to a



failure. The failure of process should be determined quickly regardless of the cause, the
overhead of failure detection should be minimized and the work should be reassigned in
a way that maintains good utilization of the remaining processes. Successful resolution
of these issues minimizes the effect process failure has on the execution time.

Finally, the library routines should provide good performance by exploiting as much
parallelism as possible. This requires an effort to minimize the communication to com-
putation ratio. There is also a need to divide the work equally between the processes
and to provide scalability. Careful algorithm design and coding of the library routines
minimize the overhead and improve the performance.

Rather than write a simplistic renderer to test the library, a publicly available, mature
ray tracer was used. The renderer chosen was rayshade [2]. This simplified the debugging
process and provided insights into adapting an existing program to use the library.
Because the ray tracer is publicly available, there are also publicly available input data
files, with known rendering times on a variety of platforms. This information allows the

relative performance of the library to be measured.

Advantages

The main advantage of utilizing a large number of machines during image generation is
the speedup. The speedup is not ideal, since there are inherently sequential parts [3] and
there are synchronization and communication overheads. Also, the computation cannot
be equally divided between the processors, since the time to compute a pixel varies.

High quality images can be generated in a single evening that would require weeks
to generate on a single machine. Techniques such as anti-aliasing, complex lighting and
complex scene layouts that would normally be avoided due to the high computing cost
can be employed.

Rapid prototyping is also possible. A full size image can be quickly generated and

used for object, light and camera layout. Unless physically modeled, the layout process



is usually iterative, and low quality low resolution, or “preview” modes are used by the
renderer. While this is often sufficient, it is useful to be able to generate higher quality
images during this phase.

The use of distributed workstations is also cost effective. Using multiple workstations,
an image can be generated in less time than using a single supercomputer, such as a
Cray Y-MP. A supercomputer can be far more expensive than hundreds of workstations,
so the distributed approach is a more cost effective solution for the type of applications
under consideration.

More reliable generation of images is possible. For complex images, it is not un-
common for rendering to require several CPU days on a Sun SLC workstation. While
downtime is minimal in a stable environment, it is unrealistic to expect machines to
consistently remain up for a week or more at a time. In addition, while idle machines
are available during non-peak times, it is difficult to reserve a machine for extended use
or do interactive work when a CPU intensive application is running in the background.

Our system handles machine failure in a robust fashion. With the exception of the
central machine on which the system starts, virtually all machines can fail and the

system continues to run, reassigning the unfinished work to the remaining machines.

Related Work

Several other researchers have used distributed processors to accelerate ray tracing or
other rendering techniques. In [4], Carter and Teague explore the design of a distributed
ray tracer. In [5], the same authors consider how to distribute the data for the ray tracer
to avoid storing the entire database at each processor. Meyers [6] discusses ray tracing on
a network of Macintoshes. Other distributed ray tracing references can be found in [7].
The Condor system [8] provides fault-tolerant process execution in a Unix environment,
but is intended for long-running, single-threaded applications. Linda [9] provides an

attractive system for creating parallel applications in a variety of languages and on



a number of different parallel computers. Although the implementation of distributed
processing discussed in this paper is not unique, there is little discussion in the literature
of how to overcome the inherent Unix limitations in order to support fault-tolerant,
distributed applications. The focus of this paper is a discussion of these limitations and

the presentation of possible solutions.

Technical Challenges

Process Limits

The most significant technical challenge encountered was the process limits imposed by
Unix. Specifically, file descriptors per process and number of processes per user are both
limited. A unique file descriptor is required for each child process in order to support
interprocess communication. For example, if the limit is 50 file descriptors per process,
a single process can communicate with at most 50 processes. This limits the number of
machines that a naive version of the library could support.

The other limit is the number of processes a user can have on a machine at a single
time. At least 300 clients can be specified on a Sun SparcStation 2 without problems.
However, this could be a problem on slower machines or machines with less memory. A
number of processes are required to initiate a process on a remote machine via the rsh(1)
command, but they are not necessarily required for the duration of the process and can
be released. Some mechanism is required to prevent slow machines from attempting to

start too many processes at one time.

Network Timeouts

Another problem discovered after the initial implementation occurs when machines crash
or are hard-booted. If a process is killed, the kernel tends to clean up and remote socket

communication is terminated in a fashion that is detectable at the other end. However,



no clean up is performed if the operating system crashes or a machine is stopped due to
a hardware failure or human intervention. The TCP communication level does provide
a method of periodically sending data to a socket to test if it is alive and to force a
shutdown of the socket if no answer is received within the timeout period. However, the
timeout period is not standard. Suns use two hours for their timeout, which was longer

than desired.

RLE Format

Another problem encountered involved the run length encoding (RLE) format as imple-
mented by the Utah Raster Toolkit [10]. RLE is a standard format for graphic images
and what the rayshade raytracer produces as output. The problem is that for a given
scanline, there is no guarantee that any output is produced. The RLE output routines
wait for the next scanline before outputting the current scanline. If the next scanline is
the same as the current one, both are not output; instead a single line is output with
a count indicating this line is to be repeated. This can be generalized to runs of three
or more identical scanlines. While this is an efficient method for compressing images, it
becomes difficult to determine when the renderer has finished computing a scanline. It

also requires the computation of scanlines in sequential order.

Library Implementation

Library Structure

The system is centralized, with all aspects coordinated by the machine that started the
computation. As shown in Figure 1, there are five distinct components to the system.
Each is a separate process that is responsible for a different aspect of the system. Note
that these processes do not all run on the same machine. The master and all submasters

run on a single machine; the slave processes usually run on different machines.



The library uses several input files. Since many command line options exist, default
values can be specified in the default options file. The default values can be overridden
with values specified on the command line. The available remote machines are specified
in an input file referred to as the machine list file. The input to the renderer is referred

to as the client’s input file.

Master

The master process runs on the central machine. It is responsible for processing the
command line options, the default options file, the machine list file and the client’s
input file. It initiates the submaster processes and passes the client’s input file, the
scanlines the submaster computes and the remote machine list to each submaster. Once
all the submasters terminate, the master constructs the final image. The master handles
any signals from the user by attempting to force termination of the submasters.

Any error in the master process is a fatal error for the system. There is little com-
munication between the master and submaster level. Information is passed down to the
submaster as parameters and passed up to the master by the exit code of the submaster
process. The submaster’s output is saved in a file with a unique name specified by the

master.

Submaster

The submaster process is designed to handle the built-in Unix limitation on the number
of file descriptors, typically about 50, a single process may have open concurrently. If
fewer machines are used, then the submaster level is not necessary. Multiple submasters
are needed to handle a larger number of machines.

The submaster sets up the socket and port for interprocess communication with the
slave process. The actual communication occurs within the dialog subroutine described

below. The submaster starts the slaves on the remote machines via the rsh(1) command



and accepts connections from the remote slave processes. Machines that do not connect
in a predefined time period are not used. Results computed by the clients are written

to the output file. The submaster insures clean termination of the remote clients.

Slave

A slave process is started on each remote machine that is used. The slave is a short-lived
process that is responsible for connecting to its submaster and forking off a child process
that runs the renderer. It then detaches from its controlling tty and sets its child’s
standard input, standard output and standard error file descriptors to the socket that
is connected to its submaster. The slave also forks off another child that becomes the
watchdog process described below.

Once everything is set up and the two child processes are running, the slave process
exits. This terminates the rsh connection to the submaster and allows approximately
three processes and three file descriptors on the central machine to be released. From this
point on, any diagnostic information must be sent via the message protocol described
later, because any normal output, such as from a printf() statement, is misinterpreted
as a message header by the submaster. The reception of an illegal message header is
considered a fatal error by the system. All of the information the slave needs for estab-
lishing a connection, such as the hostname and socket port, as well as the name of the
renderer and its command line arguments are sent via rsh(1) command line arguments.

The slave process has several options that allow the user to dynamically limit which
machines the library uses. The load limit option causes the slave to check the current
load on the machine via the uptime(l) command and to not run if the load is above
the specified limit. The console priority option causes the slave to check the ownership
of the machines console. It runs only if it is owned by the user who started the master
process or by root, which implies no one is logged in. Note that this option does not

check for users that are remotely logged in. The nice option causes the slave process



to invoke the nice(3) system call, which reduces the CPU priority of the renderer and

watchdog processes.

Renderer

The renderer is started by the slave process. There is one renderer started for each entry
in the original machine list file. Multiple entries of the same machine result in multiple
renderers started on that machine. Standard input, standard output and standard error
are all directed transparently to the submaster via sockets, so it looks like normal 1/O
to the renderer. If there is a problem on the central machine and its submaster dies,

then the renderer dies with a broken pipe signal very quickly.

Watchdog

The watchdog process was implemented once it was discovered that a socket connection
timeout cannot be detected in a timely, consistent fashion. A socket option called
SO_KEEPALIVE is built into the TCP communication level, but it is implemented
differently on every platform. On Suns, although it is documented that dead connections
time out after five minutes, the timeout is actually two hours. BSD Unix is set for eight
minutes [11].

Approximately every minute, the watchdog process checks if the renderer process
still exists and sends a message to the submaster. If the renderer no longer exists, then
the watchdog process terminates. The renderer’s process ID (PID) and the submaster
host and port are passed to the watchdog as command line arguments. The PID is used

to track the renderer; the host and port are used to connect to the submaster.

Using the Library

The distributed graphics library is designed so that a programmer can take a simple

stub program and link in the object module to produce the distributed renderer. The



stub program has four callback routines that can be registered, similar to the X Win-
dow System’s Athena Widgets [12]. The callbacks are for: initialization, data reading,
scanline rendering and termination routines.

Minor changes to the layout of the renderer may be required. The renderer must be
split into the four previously mentioned parts, each a separately callable function. The
initialization and exit routines, either or both of which can be omitted if not needed,
take no arguments. The data reading and scanline rendering routines are passed a single
argument, which represents the size of the data being sent, as the first message. The
remaining messages can be read by calling the provided library routine.

For the data reading routine, the next message provides the command line arguments.
Following this message is the input data for the renderer. This is not in the message
format and is intended to be read as if it were originating from standard input. The
parser routine must recognize that the end of the data is delimited by a special token,
which is automatically added by the library when the data is transmitted to the renderer.
For the scanline rendering routine, the next message contains the beginning and ending
scanline range.

The callback routines return zero upon successful execution. A non-zero return value
indicates an error. The stub program automatically sends an appropriate message back
to the submaster indicating success or failure. If no callback routine is registered, the

stub program automatically sends a success message.

Dialog Subroutine

The dialog subroutine is the main loop of the submaster process. It is essentially a
state machine, tracking the states of the remote processes. State transitions occur when
messages arrive from the remote processes. The next state is determined by the current
state and the type of message. Actions that need to be performed are handled here,

such as sending the data or scanline assignments.



The dialog routine handles the assignment of scanlines to the processors. This is
done by maintaining a queue of idle processors and a queue of unassigned scanlines.
Additionally, there is a third queue containing the completed scanlines. The dialog
routine assigns a range of scanlines from the scanline queue to each idle processor. The
size of the range is determined by runtime parameters.

The dialog routine also periodically calls a timeout routine and terminates the con-
nection of any process that has not responded recently. The unfinished portion of the

scanline range assigned to that client is returned to the scanline queue.

Messages and Formats

There are eight different message types currently defined, three for the client and five
for the submaster. The data structure for the message, called PacketHead, consists of
the message type and a field for the size of the data segment. The data segment is a
free form field used by some of the messages. The value of the size field is zero when the

data segment is unused. The message types are defined as follows:

typedef enum messages_t {
/* client messages */

Ack, /* generic positive acknowledgement */
Nack, /* generic negative acknowledgement */
Result, /* data that’s returned by client  */
/* submaster messages */

Hello, /* establish connection */
Bye, /* end connection */
Data, /* passing in arbitrary data */
Run, /* run program, given parameters */
Noop, /* no operation (ignored by client) */

} Messages;

typedef struct packet_t {
Messages type;
int size;

} PacketHead;

10



The client can send the following messages: Ack, Nack, and Result. The Result
and Nack messages use the optional data field. For the Result message, this field
contains the raw pixel data for the scanline that the client has just computed. For the
Nack message, this field contains the text of the error message that the client generated.
The Ack message is used to indicate the success of operations. Socket failures are treated
as Nack receptions. A library routine is provided to send the result message.

The following messages are defined for the submaster: Hello, Bye, Data, Run and
Noop. The Noop message does nothing and was used during early communication
testing phases. The Hello message tells the client to run its initialization code. The
Bye message tells the client to run its termination code.

The Data message tells the client to run its data reading routine. The submaster
then sends the data directly to the client through the socket. To the client, it appears
that the data is coming from standard input. The reason that the submaster sends the
data is twofold. First, two hundred or so machines all simultaneously accessing the same
data file can put a heavy load on the file server. Second, there may be unsupported fea-
tures specified in the input file which need to be removed. This is done by preprocessing
the file once by the master before passing it to the submasters.

The Run message tells the client to run the scanline rendering routine. When a
scanline is done, the client sends back one or more Result messages and the submaster
updates the client’s assignment field. The client sends an Ack when it finishes its

assigned scanline range, indicating that it is now ready to be assigned more scanlines.

The Submaster’s State Table

There is an entry in a state table for every remote client that the submaster is able to
successfully start. The table is created when the remote clients connect to the submas-
ter’s well-known socket. The submaster waits until either all of its remote clients have

connected or a timeout has occurred. The timeout is currently set to 20 seconds after
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the last connection occurred. Each entry of the state table is defined as follows:

typedef struct sockarray_t {

int socket; /* socket connection to the client */
long lastalive; /* last time it sent an alive msg. */
client_state status; /* current state of the client */
struct sockaddr_in saddr; /* address of client */
int assignment; /* current scanline being rendered */
int firstline; /* first line in current assignment  */
int lastline; /* last line in current assignment */

} Sockarray;

The possible states of the client are the following: Created, InitWait, Data Wait,
Ready, Running, Answering, Failed. The state transition diagram is shown in Figure 2.

The Created state is the initial state of the process. A process is in the Init Wait
state from the time a Hello message is received until an Ack is sent. Once an Ack is
received by the submaster, the data is transmitted and the process enters the Data Wait
state until the process sends an Ack. Once an Ack is received by the submaster, the
process is placed in the Ready state. A process is put on the Ready queue when it enters
the Ready state.

Processes that have been assigned work move into the Running state and are re-
moved from the Ready queue. A running process that sends a Result message is in the
Answering state. It may send multiple Result messages, depending on the number of
scanlines that it is assigned. When a process that is in the Answering state sends an
Ack, it is placed back in the Ready state and is moved back onto the Ready queue.

A process that sends a Nack enters the Failed state. If it is in the Ready queue, it is
removed. Whatever assigned work it has not finished is returned to the scanline queue.
Once a process enters the Failed state, it remains there.

If an illegal message type is received, it is considered a fatal error, and the entire
system terminates after attempting to shut down all of the remote clients by sending

Bye messages to them.
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Statistics Logging and Debugging Information

There are several different debugging levels available, determined by a runtime param-
eter. Higher levels produce more verbose information on the progress of the program,
such as clients used, scanlines assigned, failed clients and messages received.

In addition, each submaster creates a file called stats.out. XXX, where XXX is the
submaster’s index number. Each time a message is sent by the submaster or is received
from a client, an entry is added to the statistics log. Each entry consists of the message
type, the client 1D, the old state of the client and the time it occurred. Scripts are
used to convert the information in these logs into a more human readable format and to

report on the clients that currently have assignments.

Meeting the Goals

Limiting Modifications Needed To Use Library

The master requires an interface to the renderer which conforms to the specifications
given below. A custom input parser must be written for the master, using the function
read_client_input(), which modifies the client’s input file to support the distributed
implementation. The function must also parse out information, such as the screen
resolution, that is needed by the master program. Since this routine serves as an interface
between the library and the renderer, the routine must be written for each renderer.

The renderer must satisfy the following five constraints to use the library:

o four separate functions The renderer must be divided into four segments, each
callable as a separate function. The segments are: initialization, data reading,
scanline rendering and termination. If the renderer requires no initialization or

termination code, a null function can be used.

o output raw pizel data to stdout The renderer must be able to generate raw pixel
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data, as opposed to RLE format, and write it to standard output.

o read data from stdin The renderer must be configurable to accept all data from

standard input.

e no diagnostics to stdout or stderr The renderer must not print any messages to
standard error or standard output. Routines are provided in the library which

allow a failure message to be sent to the master for display.

o have some explicit end-of-input token in the grammar The renderer’s input lan-
guage must include a token to mark the end of input. The library uses the literal

endfile. This token should cause the renderer to terminate parsing.

Some users might find the constraint on renderer diagnostics too restrictive. In the
current implementation stdout and stderr share the same socket. An alternative would
be to provide a separate socket for stderr. This would allow diagnostic and informational
messages to be separated from the output data. An additional socket would be required
for each client, which further limits the number of clients per submaster. However, if
the user does not need to distinguish which client sends a message, then all clients could
share a single stderr socket. This method requires that the client be modified to send
all diagnostic and informational messages to stderr.

While the library requires the literal endfile, a minor change would allow it to be
user-specified. This constraint disallows the use of an actual end of file to terminate the
input because this would also close stdin. Stdin is used to send messages to the renderer
and therefore must remain open for the duration of the renderer’s execution. Providing

a separate channel for the input file would require another socket for each client.

Process Failure

One of the earliest design decisions in this project was that it should be able to handle

process failures due to either internal errors or external intervention. To support fault
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tolerance, every remote process has a state associated with it in the submaster. When
a process dies or is killed, its socket connection is terminated. The socket appears to
be readable by the select(2) system call, however, any attempt to read from that socket
results in zero bytes being read. Any read that returns zero bytes causes that process
to be placed in the Fuailed state.

In addition, every process that is currently working on a scanline has the scanline
range recorded by the submaster. This is updated every time a scanline is returned.
Upon failure, the unfinished scanlines are returned to the scanline queue. The process
is removed from use and the lost work is limited to the scanline being computed at the

time of failure, which is then recomputed by another process.

Distributing Workload In An Efficient Manner

Each submaster is a separate process that does not communicate with the other sub-
masters. This was done both for simplicity of design and implementation and to mini-
mize communication overhead. Once work has been assigned to a submaster, only that
submaster’s remote processes can do that work. Since scanlines cannot be dynami-
cally moved to another submaster, situations can arise where one submaster has many
scanlines left to compute while one or more submasters are completely idle. Partition
problems tend to be intractable by nature, so two different heuristics for dividing the
scanlines among the submasters are used. Another option is to use a single submaster,
however, this limits the number of machines that can be used to the number of file
descriptors available to a single process.

The first technique divides the screen into equal parts and assigns one part to each
submaster. A submaster could then assign a range of scanlines to each process, which
is useful for algorithms that make use of scanline coherence. However, it may not be an
optimal way to divide the computation. In general, “interesting” areas of a picture tend

to be centered, while background or less computationally intense parts tend to be near
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the ends. The submasters that get the ends usually finish long before the submasters
that get the regions near the center.
An alternative method was devised to achieve a better load balance. The screen is

divided such that submaster n;, of N submasters, computes the following scanlines:

n; = scanline (mod N)

In other words, each submaster is assigned every Nth line of the screen offset by its
submaster number. This causes the submasters to get scanlines from the entire picture,

which tends to more evenly distribute the workload.

Results

Figure 3 shows the time of runs with a varying number of machines on the same image.
Figure 4 shows the same data without the single machine case. The datafile used for the
test runs is aql7.ray [13]. The image resolution used for the tests was 1000 x 1000 pixels.
Only machines with low loads at runtime were used in an effort to obtain valid timing
results. However, there is no way to restrict other users from using those machines once
execution has begun. This caused the discrepancies in the data where the execution
time increases with more machines.

Ideally, the time to render an image should decrease linearly with the number of
machines used. However, there is an overhead cost associated with starting up each
process and this cost grows linearly with respect to the number of machines used. Figures
3 and 4 clearly show a substantial, although not linear, decrease in the execution time
as the number of machines used increases. This demonstrates the inherent parallelism
of the application and the efficiency of the implementation.

The most dramatic decrease in execution time occurred when the number of machines

was small. As machines are added there is less work for each machine, so the incremental
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improvement is less. As expected, once a large number of machines are utilized, such as
on the order of 150, additional machines cause only a slight reduction in execution time.

For the display devices used, only about 1000 scanlines can be shown. If 200 machines
are used, each machine computes an average of five scanlines. The theoretical maximum
number of machines that could be used is about 1000, since any additional machines
would be idle. However, the overhead of adding new machines eventually exceeds the
benefit gained by adding them. The complexity of the scene determines where this point
occurs with longer computation times allowing the use of more machines. For the picture

used, this point probably occurs at around 200 machines.

Conclusion

A fault tolerant library for implementing parallel applications with no data dependencies
in a distributed workstation environment has been presented. The library includes
features that reduce the impact the distributed computations have on other users as well
as handling machine failures. The structure of the implementation, including the process
hierarchy and communication protocol, has been described. Major technical challenges
were described along with solutions. Test results show that the implementation provides
a significant speedup by utilizing multiple machines. Although the library is presented

using a graphics program, non-graphical applications could also be supported.
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