Bessie': Portable Generation of Network Topologies
for Simulation

Frank Adelstein’
Frederick Hosch?
Golden G. Richard 111>
Loren Schwiebert’

'Xerox Design Research Institute
Cornell University
Ithaca, NY 14853
Sfrank(@dri.cornell.edu

Abstract

Widespread use of computer networking has
resulted in considerable attention being paid to a
variety of network-related problems, the genera-
tion of efficient multicast trees being one. While
many algorithms for generation of multicast trees
have been proposed, their relative effectiveness is
difficult to assess. Some algorithms have never
been implemented. Many have been simulated,
but often using ad-hoc networking modeling and
simulation tools, without consistent parameters,
making direct comparisons difficult.

In this paper, we discuss a network topology
generation tool named Bessie, written entirely in
Java. Bessie generates descriptions of random
point-to-point and hierarchical networks, based
on user-specified statistical parameters. We in-
troduce a modification to Waxman's [9] parame-
ters, commonly used in grid-based network topol-
ogy generators, which eliminates undesirable
increases in node degree as the number of nodes
in a network increases. The modification im-
proves on proposed fixed scale factors.

Keywords: multicast network protocols, dynamic
multicast groups, network generation tools,
simulation.

1 Introduction

The widespread use of computer networking
has resulted in a number of formidable network-
ing-related problems. Consider just one of these
problems: efficiently supporting popular multi-
cast-based applications (e.g., video-on-demand
and videoconferencing). Multicast transmission
may use network bandwidth more efficiently than
multiple point-to-point messages for such appli-

' Bessie is named after the blues singer Bessie
Smith.

*Dept. of Computer Science
University of New Orleans
New Orleans, LA 70148
{fred, golden}(@cs.uno.edu

*Dept. of Electrical and Computer Eng.
Wayne State University
Detroit, Ml 48202
loren(@ece.eng.wayne.edu

cations, but only if efficient multicast trees can be
constructed and maintained. Generation of static
optimal multicast trees can be modeled as the
Minimum Steiner Tree problem: given a set of
nodes in an undirected graph G, and a subset of
nodes S, find the minimum cost tree which con-
nects the set S. Nodes used in the minimum cost
tree that are not in S are called Steiner nodes.
This problem has been shown to be NP-Complete.

Since generation of optimal multicast trees is
prohibitively expensive, there has been extensive
research into development of heuristic methods
for generating multicast trees [e.g., 1,2, 4, 5,7, 8,
9, 10]. Algorithms for generating and updating
the multicast tree must typically balance “good-
ness” of the generated tree, execution time, and
storage requirements. Recently, more attention
has been focused on distributed solutions [1, 2]
and support for dynamic multicast groups [1, 5,
8], where the set of nodes participating in a multi-
cast session may change. Depending on the par-
ticular technique, changes are allowed during the
initial construction of the multicast tree, during
the lifetime of the multicast session, or both.
While many algorithms have been proposed, their
relative effectiveness is difficult to assess, since
many have never been directly implemented. Of
course, this is usually justifiable on practical
grounds—Ilarge networks are rarely available as
testbeds and experiments conducted on small
networks may not yield relevant answers. Instead
of implementation, potential techniques can be
extensively simulated, using network descriptions
which may (or may not) be similar to "real" net-
works. Unfortunately, many of the techniques to
date have been simulated with ad-hoc tools and
network models, making direct comparisons diffi-
cult.

One typical way of representing a network
for simulation is as a graph [9]. Nodes in the
graph correspond to routers (or switches) and
edges correspond to direct connections. Costs are

associated with edges to model, for example, de-
lay, or available bandwidth. These graphs can be
created manually, which is extremely tedious
when large numbers of network descriptions are
created, or generated algorithmically with an ap-
propriate tool. If a tool is used, it should be easy
to control relevant characteristics of the generated
networks, to visualize the resulting networks, and
to generate networks quickly, since often large
numbers of network descriptions must be created
for simulation purposes.

In this paper, we discuss a network topology
generation tool named Bessie. Bessie is written
entirely in Java and generates random point-to-
point and hierarchical networks, based on user-
specified statistical parameters. Bessie operates
in both GUI and command-line modes and inter-
faces with external software for generating multi-
cast trees. The GUI allows users to easily see the
effects that different parameters have on the
structure of networks and resulting multicast
trees. Command-line mode is appropriate for the
generation of a large number of network descrip-
tions. Network descriptions are saved in a format
easily incorporated into other software, such as
network simulators. Bessie forms part of our
multicast simulation testbed, which we are devel-
oping to directly compare multicast tree genera-
tion techniques. While we are using the multicast
tree problem as an example, we expect the situa-
tion to be similar in other areas of networking
research and Bessie should be applicable (perhaps
with some enhancement) in these areas as well.

The rest of the paper is organized as follows.
Section 2 briefly describes related work. Bessie is
discussed in Section 3. Finally, Section 4 presents
conclusions and future research directions.

2 Related work

One of the techniques most widely used for
generating random networks uses a grid of points
with integer coordinates and a simple probability
function for determining connectivity. This tech-
nique was discussed by Waxman [9]. Doar and
Leslie [5] enhanced the Waxman model to use a
scaling factor to offset growth in average node
degree as the number of nodes in a network in-
creases. Doar and Leslie's technique for non-
hierarchical networks is discussed in Section 3.1.
They also propose a technique for building hierar-
chical networks, which essentially builds smaller
networks using the technique for non-hierarchical
networks, and then connects these smaller "satel-
lite" networks. Bessie's edge generation tech-
nique is related to that of Doar and Leslie, but

achieves the same functionality with fewer pa-
rameters and does not require experimentation to
fix desired mean node degree.

Recent work has focused on modeling inter-
networks, to arrive at network models that more
closely model large-scale "real" networks. Cal-
vert, Doar, and Zegura [3] build an internet-like
topology piecewise from transit domains, stub
domains, and LAN's connected to the stub nodes.
The user can specify average number of transit
domains, average number of stub domains per
transit domain, average number of LAN's per stub
node, and average number of hosts per LAN, in
addition to parameters for connectivity between
the various levels and between nodes in a par-
ticular level. Doar's [6] method introduces redun-
dancy and models WAN's, MAN's, and LAN's.
LAN's are modeled as star topologies. A grid is
still used for network generation, but the scale is
changed depending on the component being built
(WAN, MAN, or LAN). Zegura, Calvert, and
Bhattacharjee [11] compare various methods for
random graph generation and propose a hybrid
method called "Transit Stub", similar to Doar's [6]
method, which allows creation of large internet-
like networks from the composition of smaller
random graphs.

3 Bessie: A portable tool for creating
network topologies

Bessie allows both interactive and command-
line generation of network topologies, with some
nodes being designated as multicast nodes. Bes-
sie generates networks by placing points ran-
domly on a two-dimensional grid and then using
probability functions to determine which nodes
are connected by edges. Connectivity can be con-
strained by node degree and node distance. After
each network is generated, a minimum spanning
tree of the network is constructed, and, if neces-
sary, the network is "repaired" by adding least
cost edges to construct a single connected compo-
nent. Currently Bessie generates edge weights
based on distance or a uniform cost of 1. Other
edge weight models are possible.

When used interactively, Bessie allows the
user to view the current network and, optionally,
superimposed minimum spanning and multicast
trees. Bessie provides an interface to allow gen-
eration of multicast trees by external, user-
specified programs, since there are a number of
applicable techniques. Multicast nodes, non-
multicast nodes, normal edges and edges which
are part of the minimum spanning and multicast
trees are color-coordinated for easy identification.

/%
\ ...;./!'/

l"' r -
1/ 77hE

R

Figure 1. User interface for the current version of Bessie.

The user may also read and write descriptions of
networks as Bessie files, and save a graphic image
of the current network. Figure 1 illustrates the
basic Bessie GUI. The parameters are explained
in Section 3.1. While Bessie is being used pri-
marily in evaluation of multicast tree generation
algorithms, we expect the basic model to be use-
ful in other areas of network research, particularly
as additional network models are incorporated.

3.1 Parameters

A set of parameters controls network genera-
tion in Bessie. Among the parameters are the
following:

v total size of the network,

v the number of satellite networks and the
average size of a satellite network (for
hierarchical networks only),
the mean node degree,
the percentage of nodes which will be
multicast nodes, and
v' a single parameter o which controls the

probability of edges between distant

nodes.

AN

All of the parameters may be specified either
interactively or on the command line. When Bes-
sie is used interactively, the user can immediately
see the effects that changes in parameters have on
network topology and the corresponding multicast
tree.

The probability function used to determine
whether a pair of nodes («, v) should be connected
is computed as follows. Let the “raw probability”
that nodes u and v should be connected be given
by

Py(u, v) = ¢ ok (Equation 1)
where L is the maximum possible distance be-
tween two nodes, d(u, v) is the distance between u
and v, and O is a parameter in the range 0<a < 1.
This follows Waxman [9] and Doar and Leslie
[5]. The larger the value of a, the higher the
probability that distant nodes will be connected.

To simplify the subsequent computation, d(u,
v) is taken to be max(|x,~x,|, .-), where
(x4, yu) and (x,, y,) are the Cartesian coordinates of
nodes u and v respectively. Thus L is effectively
the diameter of the grid from which nodes are
selected.

Now let P be the mean raw probability for all
pairs of grid points. If num(x) is the number of
pairs of grid points x units apart and N the total
number of grid point pairs, then P can be ap-
proximated by

L

Inum (x)e ™ dx

p=L Equation 2
N (Eq)

By counting, num(x) and N can be deter-
mined to be:

num(x) = 2x° - (6L + 6)x* + (4L% + 8L + 4)x
(Equation 3)

N=(L'+4L +50°+2L)/2
(Equation 4)

Finally, given P, the probability function used to
determine if nodes (u, v) are connected is

P(u,v)= (; /nP) P(u, v)
(Equation 5)

where 7 is the number of nodes in the graph, and

e is the desired mean degree. The advantage of
this approach over Doar and Leslie [5] is simplic-
ity. Their edge probability function is

P, v) = (ke /n)B) Pu, v)
(Equation 6)

where k and [3 are additional parameters. Thus one

must specify four values a priori: a, (3, k, and e
(the parameter B is from Waxman's formulation).

When building graphs, for a given o and e, one
must experimentally determine an appropriate k(3
so that the graphs generated will in fact exhibit
the desired mean node degree. With our approach,

o and e are the only two values that need to be
specified, and can be specified independently. The
graphs produced exhibit the desired mean node
degree without the need for providing additional,
experimentally determined, parameters.

Bessie implements both the Doar and Leslie
[5] edge model and the improved model described
above. To illustrate the difference, consider the
set of parameter values discussed in Section 2.1 of
Doar and Leslie, namely, 150 node networks, with
a =0.25, f= 0.2, a desired mean node degree of

3, and k experimentally determined to be 25.
These settings consistently give actual mean node
degrees of 3-4 under our implementation of Doar
and Leslie's technique. Increasing o to 0.35 re-
sults in actual mean node degrees of 5-6, and in-
creasing 0 to 0.65 results in actual mean node
degrees of 7-9. To test our edge model, we var-
ied a by 0.1 in the range 0.1 to 0.9, randomly
generating 100 networks for each value of a.
The actual node degree for every network gener-
ated was in the range 3.0-3.1. Similarly, holding
o constant while varying desired mean node de-
gree requires experimentally determining a new
value for kS under Doar and Leslie’s model. In
contrast, our model consistently achieves desired
node degrees within + 1 while varying either de-
sired mean node degree or a, for all network
sizes. These results are not reported in tabular
form for obvious reasons—desired node degree
under our edge model is virtually identical to ac-
tual node degree in all cases.

3.2 Bessie file format

Bessie reads and writes portable files which
contain network descriptions. Since a primary
design goal of Bessie is portability, Bessie files
are stored in ASCII format. We did not take ad-
vantage of Java's ability to write portable binary
files, which would substantially reduce storage
space, because we want Bessie files to be easily
readable by network simulation software written
in other languages. In the current version, a Bes-
sie file contains version information, network
topology, edge weights, a complete set of pa-
rameters used to generate the network (so net-
works with similar characteristics can easily be
generated), a snapshot of the minimum spanning
tree for the network, and optionally, a multicast
tree specification created by an external applica-
tion.

Information after the optional multicast tree
specification is ignored. This is convenient be-
cause it allows network simulators and other
software to write interesting statistics directly to
the same file that contains the network topology,
without preventing the use of Bessie to visualize
the network.

4 Conclusions and future work

Widespread use of computer networking has
resulted in a wealth of networking-related prob-
lems and generally, potential solutions are simu-
lated rather than directly implemented. We have
described Bessie, a tool for generating random

network topologies for simulation purposes. Bes-
sie allows the user either to work with network
models visually and immediately see the effects
of modifying network parameters, or to generate
many network descriptions in command-line
mode. Bessie's improved edge generation model
is intuitive and eliminates the need for experi-
mentation with additional parameters to achieve
desired mean node degrees. Bessie provides an
interface to external multicast tree generation
code, so networks can be generated, multicast
trees automatically generated using a particular
technique, and the multicast tree visualized, all
without leaving the application. Finally, Bessie is
written in Java and generates completely portable
network descriptions so it is usable on a variety of
architectures.

We are currently developing Bessie primarily
to generate network models as part of our testbed
for head-to-head evaluation of multicast tree gen-
eration algorithms. Future work will include in-
corporation of new network models [e.g., 3, 6, 11]
into Bessie to broaden its applicability in other
areas of networking research. The current ver-
sion of Bessie will be available via a link on
http://www.cs.uno.edu/~golden/research. html.

References

[1] F. Adelstein, G. G. Richard III, L. Schwie-
bert, “Distributed Multicast Tree Generation with Dy-
namic Group Membership”, University of New Or-
leans, Computer Science Technical Report UNOCS-
TR97-01.

[2] F. Bauer, A. Varma, "Distributed Algorithms
for Multicast Path Setup in Data Networks," Proceed-
ings of GLOBECOM '95, pp. 1374-1378, Nov. 1995.
Also as University of California, Santa Cruz, Computer
Engineering Department Technical Report UCSC-
CRL-95-10, August 1995.

[3] K. Calvert, M. Doar, E. Zegura, "Modeling
Internet Topology," IEEE Communications Magazine,
June 1997.

[4] C. Diot, W. Dabbous, J. Crowcroft, "Multi-
point Communication: A Survey of Protocols, Func-
tions, and Mechanisms," IEEE Journal on Selected
Areas in Communications, 15(3), pp. 277-290, April
1997.

[5] M. Doar, I. Leslie, "How Bad is Naive Multi-
cast Routing?" IEEE INFOCOM, pp. 82-89, San Fran-
cisco, California, March 1993.

[6] M. Doar, "A Better Model for Generating
Test Networks," IEEE Global Telecommunications

Conference/GLOBECOM'96, London, November
1996.
[7] Y. Im, Y. Lee, S. Wi, Y. Choi, "Delay Con-

strained Distributed Multicast Routing Algorithm,"
Computer Communications, 20(1), pp. 60-66, January
1997.

[8] B. H. Ryu, M. Murata, H. Miyahara, “A Dy-
namic Application-Oriented Multicast Routing for
Virtual-Path Based ATM Networks,” IEICE Transac-
tions on Communications, E80-B(11), pp. 1654-1663,
November 1997.

[9] B. Waxman, "Routing of Multipoint Connec-
tions," IEEE Journal on Selected Areas in Communica-
tions, 6(9) pp. 1617-1622, December 1988.

[10] P. Winter, "Steiner Problem in Networks: A
Survey," Networks, 17(2) , pp. 129-167, 1987.

[11] E. Zegura, K. Calvert, S. Bhattacharjee,
"How to Model an Internetwork," Proceedings of IEEE
Infocom '96, San Francisco, CA.

