
ASTER: Active Smart Targets for Effective Response

Frank Adelstein, PhD
Odyssey Research Associates, Inc.

(607) 266-7104
fadelstein@oracorp.com

Abstract: In this paper, we describe a
new approach to intrusion detection and
correlation, in which we actively control
or “mark” the information seen by each
adversary that probes the site. When the
adversary attacks, defenders detect the
marked information and use it to
correlate the attack and the probe. More
complex correlations can be used to
detect larger patterns, such as
coordinated attacks. We have developed
ASTER, a system that consists of (1)
Active Smart Targets that disseminate
and later recognize the marked
information, and (2) a correlation engine
to analyze the information. We describe
the feasibility prototype we have
implemented and discuss our future
plans.

1 Introduction
Modern intrusion detection schemes log
all available information and then sort
through it to find attacks. This passive
approach greatly reduces the signal-to-
noise ratio of the logs. Until the
fundamental way in which information
is gathered changes, only very limited
correlations can be made against
coordinated attacks.

Unsophisticated attackers with limited
resources can be detected and defeated
with standard best-practice security
measures, such as running firewalls and
virus detectors, installing and
maintaining current software updates,
and auditing log data. In this paper, we

focus on sophisticated attackers who
engage in coordinated attacks.
Sophisticated attackers present a difficult
challenge, because their techniques often
bypass standard detection mechanisms
and penetrate or bypass firewalls.
Worse, coordinated attacks may be
launched from multiple machines, e.g.,
by using one for reconnaissance and
another for the attack, and may target
multiple machines, sometimes within the
same department or organization. When
the probing and attacking machine in a
coordinated attack have different IP
addresses, current techniques, which are
based solely on IP addresses, cannot
reliably recognize the link between the
two machines.

In this paper, we introduce the concept
of an active system [ART] that gives
attackers information when they probe
the target and detects the information
when they attack the target. We can
compare such a system to an electric eye
that actively sends out a beam, which is
reflected back to the eye’s detector. The
rest of the paper is organized as follows.
Background material is presented in
section 2, followed by related work in
section 3. The ASTER system is
presented in section 4, and two Active
Smart Targets are described in Section 5.
We discuss the implementation status of
ASTER in section 6 and present a
summary and future work in section 7.

1

2 Background These organizations need a way to
increase the effectiveness of their log
files. In this paper, we present ASTER –
Active Smart Targets for Effective
Response, an extensible system that
performs complex correlations,
including linking probes and attacks.

Current intrusion detection systems
(IDS) take a passive approach to
gathering data, relying solely on data
provided by the system. This approach
reduces the load on a system and
provides for universal interoperability, in
that the IDS uses standard, available data
with little or no custom configuration of
the OS upon which it runs, other than
possibly enabling additional standard
logging features. (Note that this does
not imply any interoperability between
different IDSs.) While relying on
standard system logs simplifies IDS
installation and configuration, it also
limits what the IDS can detect.

Problem Statement: Rather than logging
a huge amount of data that contains very
little useful information, we need to
gather and store information that helps
us correlate probes and subsequent
attacks.

3 Related Work
Much work has been done in intrusion
detection, and many commercial
products are available. However, few
projects focus on manipulating
information the adversary sees. Two
common approaches are “honeypots”–
systems designed to lure adversaries, or
“fishbowls”–isolated, fake systems in
which the adversary cannot cause any
real damage or get any real information.

A network IDS uses the information
contained in IP packets. IP packets
contain sender address (though this may
be faked), recipient address, protocol
identification (TCP, ICMP, etc.), and a
few other fields like time-to-live (TTL).
This information is intentionally limited
in order to minimize packet headers.
Unfortunately, the limited nature of the
information restricts the overall power of
an IDS.

The Deception ToolKit [DTK] makes it
easy to implement replacements for
services. It produces fake responses and
is intended to waste the time of an
adversary. There is some ability to
customize responses, but this feature
tends to be used only to fake error
messages rather than to gather
information about the attacker.

Generally, an IDS logs large amounts of
information to detect attacks and
perform forensic analysis. An
organization the size of a mid-sized
university or company that wishes to
save a couple of months of log data from
its routers and firewalls can easily
accumulate hundreds of gigabytes of
data. Complicating this situation is the
fact that these highly visible
organizations are under an almost
constant assault by probes and attacks.
Worse, not every probe leads to an
attack, so there is a low “signal-to-noise”
ratio in the log files.

The HoneyNet Project [HoneyNet] is a
large-scale honeypot system designed to
watch how attackers break into systems.
The project is not intended for
correlation or protection.

In [Cheswick], Cheswick describes how
their honeypot system drew in a cracker

2

(“Berferd”), and how they gathered
information on him and logged all his
actions while giving him minimal
system access.

ManTrap [ManTrap] is a commercial
honeypot intrusion detection system that
enables administrators quickly and
efficiently to set up fishbowls.

In general, honeypots and fishbowls lure
in attackers and gather information.
Unfortunately, the information is
typically of limited value, since they run
on isolated, stand-alone systems that are
dedicated to luring attackers, rather than
as part of production systems. None
takes the approach we propose of
feeding information to an attacker in
order to correlate phases of an attack.

4 ASTER
ASTER is designed to increase the
effectiveness of log files by actively
manipulating information an attacker
sees. ASTER’s goal is to correlate the
probe and the attack IP addresses, even
in cases where two (or more) different
machines are used. By linking the probe
IP to the attack IP, we can more
effectively search for truly hostile probes
in conventional log files, while ignoring
probes that do not lead to attacks. By
properly mining audit log data, we can
also gain insight into the bigger picture:
the pattern connecting the phases of a
coordinated attack.

The key concept of ASTER is active
smart targets. An active smart target
(AST) is a decoy target, meant to lure
attackers and hand them marked cards
by means of which coordinated phases
of an attack can be recognized and
correlated. A marked card is traceable

information provided by the AST, a low-
bandwidth, high-value data item that
makes it possible to correlate
coordinated attacks from multiple IP
addresses.

In addition to the ASTs, ASTER has a
correlation component, which mines the
data gathered by the ASTs to gain
additional information about the attack.

ASTER can be linked into other
correlation engines as well as into
response systems that can take actions
such as change firewall rules on the fly
to block further attacks. In addition,
ASTER can be tied into a “fishbowl”
environment that misdirects the
attackers, wasting their time making
them pursue harmless, but attractive,
avenues of attack, while leading them
away from valuable resources and
gathering information on them.

In the initial version of the project we
built a simple proof-of-concept system
consisting of two prototype ASTs and a
database interface for the marked cards
and related information (e.g., the time
the marked card was given and the IP
address to which it was given). Next, we
defined some more complex queries and
correlations for our database API to
support, such as queries over a time
range.

In the next section, we describe the two
ASTs that were implemented and the
correlations that we can perform on the
data they gather.

5 Active Smart Targets
(ASTs)
In the following section, we describe the
implementation of two active smart

3

targets. Each AST uses a different
scenario. For each AST, we first
describe the view presented to the
attacker, followed by what is really
happening, and then describe how the
marked cards make this possible.

5.1 Scenario 1:

The story:

A cracker discovers that the password
file (/etc/passwd) on a target machine is
visible through the anonymous ftp
account, since anonymous ftp allows
access to a limited number of files
without the use of a password. He
downloads the file, runs a password-
cracking program on it, and discovers
that the “www” account has a trivial
(i.e., single word) password on it,
allowing him to log onto the system
using the www account via the telnet
program. Access to this unprivileged
account gives him a toehold on the
system from which he can attempt to
elevate his level of access. From a
second IP address, he telnets into the
target machine and logs into the www
account.

What ASTER does:

ASTER enables us to correlate the IP
addresses of the machine that was used
to steal the password file with the one
that logs into the www account. ASTER
does this by providing every probe with
a different version of the password file,
each one of which has a different
password for the www account. The use
of this unique password from a different
IP address allows ASTER to correlate
the probing IP address with the attacking
IP address. By determining that a
particular probe IP address is

“malevolent” we can then check to see if
that IP address has probed other ASTs.
We can also search conventional log
files for that address.

In addition, the www account is a
fishbowl, a protected decoy system, in
which the user can do no harm while all
of his actions are observed and logged
for later analysis.

How ASTER works:

On the AST machine, the FTP daemon is
modified to behave analogously to CGIs
on a web server. Attempting to
download a file via FTP (the “get”
command) invokes a script that checks if
the name of the requested file is on a list
of sensitive files. Currently,
“/etc/paswd” is the only file listed. If the
file is on the list, then a second script is
invoked to generate a fake password file,
otherwise the file is downloaded as
usual.

The password file generator script uses a
template to generate the password file.
All entries except for the “www”
account are static and the encrypted
passwords are difficult to crack. The
script fills in the entry for the encrypted
password for the “www” account by
encrypting a simple dictionary word “on
the fly.” It determines what dictionary
word to use by consulting the main
database. The script is passed the IP
number of the machine attempting to
download the file and checks if that IP
address has requested the file before. If
so, then it uses the dictionary word that
was previously used. If not, then it uses
the next available word from a list,
stores that word in the database, and
updates the index that indicates the next
available word.

4

The configuration file for the telnet
daemon (inetd.conf) was modified so
that a fake login program runs instead of
the normal one. This login program
appears to allow users to log in, printing
the usual prompts. However, any
account other than the “www” account is
denied access. In the initial version of
the implementation, the www account is
allowed to log in regardless of what
password is used. Future versions may
restrict access only to those passwords
that have been disseminated. The user is
put in a fake shell, which provides no
access to system resources. In the initial
version, only a minimal number of
commands are implemented (this shell
could be referred to as fsh for the
“frustration shell”). When the attacker
logs in to the www account, the
password he used to log in is sent to the
correlation program, which associates
the attacker’s IP address with the probe.
The correlation program is described in
Section 5.3.

The marked card:

The marked card in this scenario is the
easy to guess password. It is
disseminated in the fake password file,
and is detected by the fake login
daemon. The probe and attack represent
two very different aspects and are likely
to be from two different machines, but
can be linked via the marked card.

5.2 Scenario 2:

The story:

A cracker discovers an unpublished web
server running on a non-standard port.
The main page of the server has a link to
another machine that appears to be
running an “interesting” application

(e.g., accounting). The attacker then
attempts to attack this secondary site,
read “unpublished” files, and run
vulnerable CGIs (e.g., finger).

What ASTER does:

ASTER associates the IP address of the
machine used to locate the first web
server with the IP address of the
machine used to read the web page on
the second web server. Scenario 2 is
deliberately simple in order to allow us
to define and test the correlation
functions. However, we could increase
the complexity of this scenario by
encrypting the content of the first web
page (which points to the second page)
or requiring that the “attack” consist of
exploiting a known web server bug, like
a buffer overflow on a CGI, thus forcing
the attacker to use more sophisticated
techniques.

In any event, the machine name of the
second web server is the marked card
that enables us to trace the attack to the
probe.

How it works:

The main page for the unpublished web
server (“index.html”) is actually a CGI
script, although it looks like a static web
page to the attacker (because of the URL
name and its properties). The CGI script
uses a template to generate the web
page, and fills in the entry for the link to
the second machine “on the fly.” The
URL is of the form:

http://machinename/filename
.html

where “machinename” is a fully
qualified domain name (FQDN), like
abcdefg.astersubdomain.bigc

5

http://machinename/filename.html
http://machinename/filename.html

ompany.com. In this case, the
“abcdefg” is uniquely generated for each
probe. Given the IP address of the
machine attempting to retrieve the web
page, the CGI fills in the entry for the
machine name. If that IP address has
requested the page before, it uses the
name that was previously used. If not,
then it uses the next available name from
a list, stores that name in the database,
and updates the index that indicates the
next available name.

The marked card in this scenario is the
name of the second machine. It is
disseminated by the CGI script and is
detected by the second web server, as the
browser specifies the host name through
the Host: directive as per the
HTTP1.1 specification [RFC2068].

5.3 The Correlation Program

The correlation program links the probe
to the attack, and can also perform more
complex correlations to detect larger
patterns of similar behavior of the
attacker, such as detecting if the attacker
has probed other machines on our net.
The correlation program runs separately
from the ASTs. Ideally, it should run on
a separate machine with severely
restricted access rules, behind a firewall.
It has access to the ASTER database and
can perform correlations when an AST
passes it a marked card or when a
console user requests additional
analyses.

The key point is that all names point to
the same IP address. In the initial
implementation, we do this by using a
small list of names, all with the same IP
address. Future versions will involve
either dynamic DNS host allocation or
modification of the DNS. All requests
go to the same web server, which is able
to distinguish what name it is being
called by using “virtual hosting”
technology. Current web servers allow
different web databases to be used
depending on the name by which they
are called. CGI scripts can detect this
via the SERVERNAME environment
variable, bypassing the need for
configuring the web server to run
multiple virtual servers. The server
determines the name because it is
specified in the HTTP request via the
HOST: directive [RFC2068].

The first type of correlation it performs
is to link the probe and attacker IP
addresses given a marked card.
Whenever an AST gives out
information, it records the IP address of
the requestor and the marked
information in its database. When an
attacker hands us a marked card (e.g., a
specific hostname or password), we look
it up in the database and find the IP
address from which the attacker first
received the card.

The second web server then creates an
environment that appears to be
appropriate for the intruder, for example,
files in the /etc directory can refer to
the appropriate machine name. While
the web requests are being processed,
the host name is passed to the correlation
program.

Currently, the correlation program is
limited to performing a simple link
between the probe and attacker.
However, the database library is able to
perform far more complex correlations.

The marked card:

6

7

There are two primary calls to the
database library, StoreEvent() and
RetrieveEvent(). StoreEvent() is used to
add an entry to the database.
RetrieveEvent() gets matching events
from the database. Events can match
based on the IP address, the timestamp
(date and time) or timestamp range, and
the AST marked card data. Any field
can be omitted as a search criterion—for
example, it is possible to look just for
events with matching IP addresses or
events in the same timestamp range.
Wild cards can be used in IP addresses,
in order to check for a range of addresses
(e.g., 192.175.*).

We plan to extend the correlation
program to look for larger patterns.
Given an attack, we can find the IP
address that corresponds to the probe.
Once we have the probe’s IP address, we
can find any probes that occurred around
the same time, say within an hour. We
can also find all IP addresses that come
from the same Class C address space.
Since the database interface currently
supports these queries, it is a simple
matter to add these capabilities to the
correlation program. Extensions to the
database interface include comparing the
delay between the probe and the attack,
as well as the overall scope of the attack
(i.e., how many machines were targeted
by that attack).

Our goal is to create a model of the
attack. We could create a directed graph
representing the types of links
mentioned above. Then we could
compare one graph to another to
determine if the attacks have similar
parameters (in time and space).
Specifically, is there a pattern between
machines that are probed and attack, and

machines that are used to perform the
probes and attacks? For example, are all
machines in a subnet targeted, or only
certain machines, perhaps ones with the
same final number in their IP address?
Are all vulnerable machines attacked, or
are some probed and left alone? Do the
attacks come from similar hosts or
different ones? Do these probes and
attacks share similar patterns in time?
There are many questions to explore by
mining the correlation data.

6 Implementation Status
We have demonstrated the feasibility of
the ASTER approach. We are able to
disseminate “marked cards,” record that
we have done so, and then later detect
the marked cards and link them back to
the probe. This project does not focus
on response, so in our prototype the
output of the system is simply a message
in a log file. In a commercial system,
ASTER would alert a response agent,
providing it with all relevant information
about the attack.

One of ASTER’s strengths is that its
behavior looks like normal system
behavior and its marked cards appear to
be legitimate system data. The ASTs
cause no discernable delays. In the web
site example, the page appears to be a
normal, static web page, with no
indication that the content is dynamic.
In the ftp example, the password file
appears to be a normal password file.
An attacker could run a probe from two
different IP addresses and compare the
output. If he did this, the differences
would be apparent. However, such
double probing doubles the amount of
work a reconnaissance system must do
as well as its risk of detection.

Field Type Null Key Default
ASTid int(11) YES MUL NULL
IP varchar(20) YES NULL
Timestamp Timestamp(14) YES MUL NULL
ASTdata varchar(200) YES NULL

Table 1: Description of ASTdb table

We have not tried using shadow
password files, but adding them to the
existing system would be
straightforward.

The storage overhead for the database
can be computed as follows. For each
marked card, the ASTdb table contains
an ID field to identify which AST
generated the marked card, the IP
address from which the probe or other
attack originated, a timestamp, and the
marked card itself. Table 1 shows how
the ASTs are defined in the mySQL
database.

Each record uses a total of 245 bytes.
Storing data for 100 distinct scans per
day requires 24,500 bytes per day. To
maintain 6 months of records requires
roughly 4.4M of data to be stored. This
is a very small amount of data for a
database, and searches on a database of
that size can be performed quickly.

Finally, we examine the detectability of
the marked data we disseminate versus
the level of effort required to write the
code. However since the code is written
only once and then reused repeatedly,
this is factored into our analysis. The
code was written in less than one month,
and is able to mimic most of the system
responses to a high degree of accuracy.1

Given more time, we believe it should be
fairly straightforward to produce highly
realistic ASTs.

7 Summary and Future
Work
We have created Active Smart Targets to
disseminate marked data to potential
attackers. We detect the marked data
during subsequent attacks. By “tagging”
the data, we increase the quality of the
information we can obtain about an
adversary. We have implemented two
ASTs and the database framework, and
have run some initial tests on the system
with promising results. We can perform
simple correlations to determine, given
the IP address of an attacker, the IP
address of the probe associated with that
attack. We have also created a database
library that allows rich queries to be
performed in order to mine valuable
information on the nature of complex
attacks.

Future work will focus on several areas.
First, we intend to add additional
functionality to the correlation engine
that will allow it to look at the bigger
picture of the attack. It will also be able
to provide a warning to systems in

1 We note one “bug” in the current AST
implementation of a decoy ftp daemon:
downloading a non-existent file behaves in the

same way as downloading a 0-length file. The
system should generate a file-not-found error but
currently does not.

8

9

sibling departments that do not run
ASTs. By determining what IP
addresses represent “hostile” or
“aggressive” probes, system
administrators can look through
conventional log files (e.g., via “grep”)
to see if they have been probed by these
hosts.

We intend to field a system at multiple
universities to test it “in the wild.”
ASTER can provide key information as
to what percentage of scans lead to
attacks. This information is important to
administrators and managers in order to
determine the amount of resources that
need to be dedicated to campus-wide
network security. By field-testing it in a
hostile environment, we hope to gain
additional insight into ASTER’s
capabilities and understand where it can
best serve security administrators.

Acknowledgement
We gratefully acknowledge support for
this research by the Defense Advanced
Research Projects Agency’s Cyber Panel
program, under DARPA contract
DAAH01-01-C-R012. The views and
conclusions contained in this document
are those of the authors and should not
be interpreted as representing the official
policies, either express or implied, of the
Defense Advanced Research Projects
Agency or the U.S. Government."

References
[ART] Leonard Popyack, Jr. and
Stephen Taylor, “Active Response
Technology,” to appear in IEEE
Spectrum, 2001.

[Cheswick] Bill Cheswick, “An Evening
with Berferd In Which a Cracker is

Lured, Endured, and Studied,” AT&T
Bell Laboratories.

[DTK] Deception Toolkit, Fred Cohen &
Associates, http://all.net/dtk/dtk.html.

[HoneyNet] The HoneyNet Project,
http://project.honeynet.org/

[ManTrap]
http://www.recourse.com/download/whit
e/ManTrap.pdf

[RFC2068] R. Fielding, J. Gettys, J.
Mogul, H. Frystyk, T. Berners-Lee,
“Hypertext Transfer Protocol --
HTTP/1.1,” DEC, MIT/LCS, RFC2068,
January 1997,
http://www.w3.org/Protocols/rfc2068/rfc
2068.

http://all.net/dtk/dtk.html
http://www.recourse.com/download/white/ManTrap.pdf
http://www.recourse.com/download/white/ManTrap.pdf

	Introduction
	Background
	Related Work
	ASTER
	Active Smart Targets (ASTs)
	Scenario 1:
	Scenario 2:
	The Correlation Program

	Implementation Status
	Summary and Future Work
	Acknowledgement
	References

