
Abstract
As group applications become more prevalent, efficient
network utilization becomes a major concern. Multicast
transmission may use network bandwidth more efficiently
than multiple point-to-point connections. Many algorithms
have been proposed for generating “good” multicast
trees, however, these algorithms have significant limita-
tions for networks containing mobile hosts. Existing algo-
rithms either do not support changes to the multicast
group while building the tree or impose unrealistic re-
strictions, such as prohibiting overlapping modifications
or forcing regeneration of the tree after each change.
Clearly, to extend the range of applications that depend on
multicast communication to mobile hosts, multicast tree
algorithms must provide a flexible means for participants
to join and leave the multicast group. We propose an effi-
cient distributed algorithm that supports dynamic changes
to the multicast group during tree building and allows
overlapping join/leave operations. In this paper, we pres-
ent the algorithm and initial simulation results.

Keywords: mobile networks, dynamic multicast
groups, multicast protocols, distributed Steiner algorithms.

1. Introduction

Networked multimedia applications that use multicast
communication, such as distance learning, cooperative
design tools, and videoconferencing, are growing in
popularity. There is substantial interest in making these
applications available to mobile hosts. These applications,
which are often long-lived, place high demands on the
underlying network, and can have a dynamic set of par-
ticipants. Further, as the size of the multicast group for an
application increases, efficient network utilization be-
comes more important. An important aspect of supporting
a multicast session is building an efficient multicast tree.

Heuristic techniques are generally employed to gener-
ate static cost-optimal multicast trees, since generation of
optimal trees (which can be modeled as the Steiner Tree
problem) is NP-Complete [14]. Algorithms for generating

multicast trees must typically balance “goodness” of the
generated tree, execution time, and storage requirements.
Another factor for tree generation algorithms is centralized
versus distributed control. Centralized algorithms tend to
be simpler, but the coordinating site can become a bottle-
neck and a single point of failure. Distributed algorithms
can run more quickly and be more fault-tolerant, but tend
to have higher communication costs and more complexity.

Building efficient multicast trees in environments with
dynamic multicast groups is very difficult, since changes
to the multicast group can occur even during generation of
the tree. To be effective, algorithms to create multicast
trees must generate correct trees quickly, even if multiple
changes to the multicast group occur concurrently. When
nodes join or leave a multicast session, the efficiency of
the tree tends to degrade. In general, more membership
changes increase the degradation of the multicast tree.
When a multicast group changes significantly, it may be
desirable to rebuild the tree, and again, the algorithm for
generating the multicast tree must execute quickly while
dealing with membership changes during generation. A
network that includes mobile hosts is likely to see more
group changes, as the mobile hosts move among base sta-
tions. Hence, the quality of the multicast tree can degrade
more quickly and the benefits of periodically rebuilding
the multicast trees may be more noticeable.

In a dynamic environment, requiring that the multicast
group not change during the multicast tree setup could
result in incorrect trees, so supporting concurrent updates
is very important. Previous work in the area has focused
on minimizing the execution time of the tree construction
algorithm. To our knowledge, no research has been done
on supporting concurrent changes to the multicast group
during execution of the algorithm. Our distributed algo-
rithm efficiently supports overlapping join and leave re-
quests during generation of the multicast tree.

2. Related Work and Problem Statement

There has been considerable work done on multicast
route selection [5]. Most of the work, both centralized and
distributed, takes one of three approaches: Steiner trees,

Building Dynamic Multicast Trees in Mobile Networks

Frank Adelstein
Odyssey Research Assoc.
Ithaca, NY 14850-1250
fadelstein@oracorp.com

Golden G. Richard III
Dept. of Computer Science
University of New Orleans
New Orleans, LA 70148

golden@cs.uno.edu

Loren Schwiebert
Dept. of Electrical and Com-

puter Engineering
Wayne State University

Detroit, MI 48202
loren@ece.eng.wayne.edu

2

source-based routing, or core-based trees. Steiner tree-
based algorithms produce efficient trees. Heuristics are
used to generate “good” rather than optimal trees, since
generation of optimal trees is NP-Complete [14]. These
trees generally use fewer network resources than the other
two approaches, especially when there is a single source.
Source-based schemes build a tree rooted at each source,
but do not use Steiner-tree heuristics and tend to require
more network resources. Other advantages, such as mini-
mizing delay, are often the goal of these algorithms. Early
schemes typically relied on periodic broadcasts to deter-
mine and maintain group membership, and so do not scale
well to large multicast groups. Other approaches, such as
Protocol Independent Multicast – Sparse Mode (PIM-SM),
are being developed to address the problem of defining
multicast groups in large networks. Core-based ap-
proaches [7] are most appropriate when there are multiple
sources in the multicast group. One node is chosen as the
center and all multicast traffic is routed to and through this
central node. All sources must transmit through the core,
so traffic concentrations can be high. In addition, the re-
sulting multicast tree is likely to be less efficient for each
source than separate multicast trees. There are drawbacks
with Steiner trees as well, such as inefficient use of net-
work resources if multiple multicast trees exist simultane-
ously. In fact, the best choice of a tree-building approach
remains an area of active research. The algorithm in this
paper addresses an important problem for Steiner tree
based algorithms; however, the ideas should be extensible
to other approaches to building multicast trees. Due to
space constraints, we discuss related work focused on
Steiner tree-based approaches.

Doar and Leslie [6] support using a “naïve” approach to
create the multicast tree, which takes the union of all
minimum cost paths from the source to the destinations.
Simulations show that the generated trees generally have
efficiencies within a factor of two of optimal. Doar and
Leslie argue that the simplicity of their approach compen-
sates for generation of sub-optimal trees. They also point
out that frequent multicast group changes can quickly de-
grade a near-optimal tree, while their algorithm is more
resilient to changes. Although their algorithm exhibits
good performance, it may not be well-suited for all envi-
ronments. For example, when many nodes leave the mul-
ticast group, the performance tends to degrade [11]. Our
algorithm is suitable for such situations, since it could be
used by a protocol that partially rebuilds a multicast tree.

 Shaikh et al. [11] present a multicast route selection
algorithm that requires no global cost information and
generally produces good trees. Although only localized
information is required, the algorithm joins nodes to the
multicast tree sequentially, so the algorithm is not com-
pletely distributed. Another approach, proposed by Im et
al. [8], uses a delay-constrained algorithm, requiring N
rounds to construct a multicast tree with N receivers. The

algorithm proceeds by adding the closest receiver to the
existing multicast tree in each round. Supporting a dy-
namically changing network topology is discussed, how-
ever, the authors assume a static multicast group during
the multicast tree setup.

Ryu et al. [9] propose centralized techniques for sup-
porting dynamic changes in ATM multicast groups. The
algorithm assumes a static multicast group during the
multicast tree setup. The multicast tree is built by repeat-
edly selecting the minimum cost path from the current tree
to destinations that are not yet connected to the tree. It
prunes leaf nodes that depart, but does not reroute existing
connections based on late joins or leaves. The algorithm
uses the probability of nodes joining or leaving the multi-
cast group to design trees that facilitate the sharing of
paths and produce a relatively large number of leaf nodes.

Bauer and Varma [4] propose a distributed algorithm to
establish a multicast tree in a point-to-point network using
shortest path heuristics (SPH) and Kruskal-based shortest
path heuristics (K-SPH). Their algorithm builds the tree
from "fragments," initially consisting of just the individual
multicast nodes. These fragments combine with each
other to form new fragments, with a single node assigned
as the leader of each fragment. Each leader runs a distrib-
uted algorithm that is either in a discovery phase or in a
connection phase. In the discovery step, a "flood to N"
approach is used to find the closest nodes, to propagate
information about the fragment leader to fragment mem-
bers, and to send updated shortest path information from
each node to the fragment leader. In the connection step,
each fragment picks a "preferred fragment" and attempts
to negotiate a merger with it. Nodes in the discovery step
respond to a request to merge with a busy reply. If the
merger succeeds, the fragments are combined. This proc-
ess continues until there is a single fragment remaining,
containing all of the nodes participating in the multicast.
One problem with this approach is that the “discovery
step” can impose a high overhead when the network to-
pology is relatively stable, since the same information is
recomputed many times. In addition, a merge request may
result in a series of busy replies followed by additional
requests to the same node. Another problem is that their
tree-building algorithm does not support changes to the
multicast group during generation of the tree. This could
be especially problematic in a multicast group with mobile
hosts, since the location of these hosts could change while
the multicast tree is being built.

2.1. Problem Statement

Given an arbitrarily connected communication network
G=(V, E), a set of multicast participants Vm ⊆ V, and a
source Vs ∈ Vm for the multicast, form an efficient Steiner
tree to connect the multicast nodes. Leaves of the multi-
cast tree are multicast nodes, although non-participating

3

nodes (Steiner nodes) may be required to form the tree.
The algorithm is fully distributed and handles changes to
the multicast group during execution.

2.2. System Model

We assume an arbitrarily connected point-to-point net-
work of N=||V|| nodes, any of which may participate in a
given multicast session. The network includes mobile
hosts, which are connected to the fixed network through
base stations. Participating mobile hosts must be leaf
nodes or the source. Routing information to each potential
destination, including the next node in the route and the
associated cost, is available at each node in a routing table.
Distinct edges may have different costs, but the cost for an
edge between two nodes is the same in both directions.
Although the network may lose packets due to congestion
or noise, the transport layer delivers messages in order in
finite time and does not drop or corrupt messages. This
implies that no permanent node or link failures occur dur-
ing the execution of the algorithm. This is consistent with
previous work, which has not discussed fault tolerance. A
fault tolerant solution is the subject of on-going work.

3. The Algorithm

In Section 3.1, we describe our basic distributed algo-
rithm for building an efficient multicast tree. Section 3.2
extends the algorithm to handle changes to the multicast
group during generation of the tree. Section 3.3 addresses
termination of the algorithm and pruning the generated
tree of unneeded connections. The basic algorithm gener-
ates a correct tree provided the following conditions hold:

ä The multicast group Vm is known to all participants.

ä The multicast group does not change once execution
of the algorithm has begun.

Certain aspects of the basic algorithm resemble Bauer
and Varma’s [4], such as connecting fragments through
the shortest path and selecting a preferred fragment, but
there are substantial differences. To make the description
of the algorithm clear, we assume that a given set of nodes
is involved in the generation of at most one multicast tree.
Concurrent generation of multicast trees for different
sources is possible by maintaining a unique multicast ses-
sion ID and separate data structures for each tree.

3.1. Basic Algorithm

Each node stores the following local variables:
ä ID (the node’s unique identifier)
ä FragID (identifier for the fragment)
ä F (list of nodes in this fragment)
ä Vm (nodes wishing to be in the multicast)
ä Vs (multicast source node identifier)
Initialization

In the initialization step, a fragment is created for each
node in Vm. Initially, each node is the fragment leader of
its fragment. Each fragment has a list of all nodes in the
initial multicast group. This information is used to build a
list of merge candidates. Each node has access to a rout-
ing table and can determine the cost of transmitting a mes-
sage to other nodes. The fragment leader is responsible
for coordinating mergers with other fragments and for
updating group members in its fragment. Each node for-
wards multicast messages to its children — the other
members of its fragment to which it is directly connected.
Merge Negotiation

Each node looks through its routing table to find the
closest multicast participant, which becomes its preferred
node. Because fragments may not have complete infor-
mation on the other fragments in the tree, each fragment
must choose its preferred node based on local information.
This information is accumulated from the nodes within the
fragment, but nodes outside the fragment are not queried.

Once a fragment leader selects a preferred node, it
sends a MERGE REQUEST containing FragID to that
node and waits for a reply. When a fragment leader re-
ceives a MERGE REQUEST, if the sender is the preferred
node, then it sends an ACCEPT message and both leaders
enter the connection phase. If the sender is not the pre-
ferred node, then the request is noted by sending a BUSY
reply to the sender. If a non-leader receives a MERGE
REQUEST, it forwards the MERGE REQUEST message
to its leader for processing and transmits a BUSY reply,
with its FragID attached, to inform the sender of the iden-
tity of the fragment leader.

When a node receives a BUSY reply to a MERGE
REQUEST, the fragment sending the BUSY initiates a
MERGE REQUEST later, so the node receiving the
BUSY waits for a MERGE REQUEST. A node receiving
a BUSY reply to a MERGE REQUEST may ACCEPT a

Figure 1. Two fragments merge successfully.

3

MERGE REQUEST

ACCEPT

Fragment leader

MERGED message

CONNECT message

7

4

MERGE REQUEST from another fragment, if the cost is
less than or equal to its current preferred fragment.
Connection phase

The purpose of the connection phase is to join two
fragments. The fragments are joined using the shortest
path between them and nodes along this path are incorpo-
rated into the merged fragment. If any of the nodes along
the shortest path connecting the fragments belong to a dif-
ferent fragment, the merge attempt fails.

Fragment leaders entering the connection phase per-
form the following actions, as illustrated in Figure 1. The
fragment leader with the lower ID sends a CONNECT
message along the shortest path between the fragments.
Upon receiving the CONNECT message, if a node is not a
member of another fragment and is not reserved, it tenta-
tively becomes a member of the combined fragment and
marks itself reserved. It then forwards the CONNECT
message along the shortest path. If a node receiving a
CONNECT is a member of another fragment or reserved,
the merge fails. The node sends a NACK backward along
the shortest path. Each node receiving the NACK cancels
its reservation and reverts to its previous status. When the
NACK arrives at the leader, it sends a NACK to the other
leader and the merge fails. The procedure then restarts
with the selection of another preferred node. If the CON-
NECT message reaches the tail of the shortest path be-
tween the fragments, a MERGED message is sent back
along the shortest path between the fragments. The
MERGED message makes the reservations permanent and
propagates a list of Steiner node IDs back to the leader,
who adds the new members F.

The leader node with the lowest node ID becomes the
leader of the combined fragment. The node with the
higher ID sends its fragment membership list, via an UP-
DATE TABLES message, to the new leader, who adds
these members into the new fragment membership list.
The leader of the combined fragment calculates a new
preferred node and multicasts an UPDATE TABLES mes-
sage to the other fragment members. This message con-
tains the leader’s identity, the list F, the current preferred
node, and its cost. When a fragment member receives the
UPDATE TABLES message, it updates FragID and F,
and then computes its own preferred node. If this pre-
ferred node is closer than the one suggested by its leader,
it returns an UPDATE message with its preferred node and
the cost, otherwise it sends back an ACK message.

The fragment leader gathers the UPDATE/ACK mes-
sages and determines the closest multicast participant that
is not a member of the fragment, which becomes the new
preferred node. The leader then sends out a MERGE RE-
QUEST and the process repeats. The algorithm terminates
when the leader determines that there are no other frag-
ments (Vm ⊆ F). Detailed pseudocode appears in [1].

3.2. Dynamic Algorithm

A practical distributed algorithm must handle changes
to the multicast group during tree setup. Two types of
changes are possible: additional nodes may wish to join
the multicast group and current members of the multicast
group may wish to leave. The modifications proposed in
this section extend the basic algorithm to support concur-
rent changes to the multicast group during generation of
the tree. If no dynamic changes occur, the algorithm oper-
ates as previously described. An additional data structure,
called BUSY_Q, is required to support dynamic changes.
The BUSY_Q tracks the ID of nodes to which BUSY mes-
sages have been sent. In addition, F and Vm must be
augmented to allow entries to be marked as added and
deleted.
Join Requests

Requests for entering the multicast group after the tree
setup has started are handled as follows: the new node
becomes a new singleton fragment, contacts a member of
the multicast group, and then sends a merge request to its
preferred fragment. (Join requests from nodes already in
a fragment are handled locally within that fragment.) In
this section, we describe how the information is updated
and consistency is maintained.

The new node uses its own ID for its fragment identi-
fier and considers itself the leader of this singleton frag-
ment. Two possibilities exist: the multicast tree has al-
ready been established or the tree generation is still un-
derway. The new node is unaware of the status of the tree,
but knows the identity of the source node, Vs. Therefore,
it sends a JOIN REQUEST toward Vs. If the tree has
already been built, this request is processed in the network
by an independent protocol that dynamically adds group
members to an existing tree [3], [6].

Otherwise, the JOIN REQUEST must be intercepted by
our tree-building protocol and processed as a late join. As
the JOIN REQUEST propagates toward the multicast
source, it either encounters another fragment or reaches
the source. The fragment member that receives the JOIN
REQUEST forwards it to the fragment leader, which adds
this node to its copy of Vm. In order to ensure that all
nodes in a fragment have a consistent view of the multi-
cast group, the multicast membership lists are merged
when the fragments merge.

A LATE JOIN REPLY is returned to the new node.
This message contains the current list of multicast group
members known to the responding fragment. Upon receipt
of this reply, the new node determines its preferred node
using its routing table and sends a MERGE REQUEST to
that fragment. When the preferred fragment’s leader re-
ceives the MERGE REQUEST, it adds this node to Vm.

If the preferred fragment has deleted itself from the
multicast group, then the MERGE REQUEST is rejected
and the new fragment selects another candidate as its pre-

5

ferred node. An exception is whenever all multicast group
members known to the responding fragment decide to de-
lete themselves from the multicast group after the frag-
ment leader responds to the JOIN REQUEST. For this
pathological case, the new node sends a MERGE RE-
QUEST to the source and notifies the source that no mem-
ber of the original multicast group wishes to participate.

There are two more issues with late joins. First, a frag-
ment could ACCEPT a MERGE REQUEST from a node
that is not the closest, as it is unaware of closer late joins.
This does not affect correctness, only efficiency. Second,
a connection attempt by two fragment leaders may be
blocked by a node of which neither is aware. When the
blocking node sends a NACK, its ID is attached so the
node can be added to Vm at the receiver. The blocking
node then becomes a candidate for preferred node.
Leave Requests

Leave requests are more complicated than join re-
quests, since the node to be deleted may have already been
incorporated into a fragment. If the node is still a singleton
fragment, it simply sends a NOT INTERESTED response
to any MERGE REQUESTs. The node receiving the NOT
INTERESTED response to a MERGE REQUEST marks
the node as deleted in F and Vm.

If the node is in a fragment with more than one mem-
ber, it sends a DELETE message to the fragment leader.
The deleted node continues to handle future MERGE RE-
QUESTs the same way as other non-leader nodes in the
fragment. If the fragment leader wishes to leave the mul-
ticast tree, it selects the remaining member of the fragment
with the smallest ID and requests that that node take over
leadership duties via a CHANGE LEADER message.
Once the new fragment leader has been “elected”, pending
MERGE REQUESTs (i.e., entries in the BUSY_Q) as well
as up-to-date copies of Vm and F are forwarded to the new
fragment leader. The new leader subsequently updates
other nodes in the fragment with an UPDATE TABLES
message. When no other group members remain in a
fragment, the fragment is dissolved.

Before the fragment is dissolved, nodes that received a
BUSY response from this fragment must be informed so
they do not wait forever. To track BUSY messages, an
entry is added to the BUSY_Q whenever a BUSY is sent in
response to a MERGE REQUEST. When the fragment is
dissolved, the leader sends FRAGMENT DISSOLVED
messages to each node with an entry in the BUSY_Q.
Combining Fragment Information

When two fragments are merged, they may have an in-
consistent view of the multicast group. Inconsistent views
may be caused by late joins and leaves. Any inconsistent
information is reconciled by the new fragment leader and
then multicast to all nodes in the newly merged fragment.
This can be done by including this information in the UP-
DATE TABLES message.

The combined F is the union of the two original frag-

ment lists. Thus, nodes marked as deleted in either list are
marked deleted in the combined fragment list. Similarly,
nodes added to either fragment become members of the
combined fragment. The combined Vm is the union of the
two original multicast group membership lists. Nodes
marked as deleted in one list but added in the other are
marked as added in the combined list. This ensures that a
node that sent a NOT INTERESTED reply to one frag-
ment and a JOIN REQUEST to the other remains a candi-
date for merging. Finally, the BUSY_Q set for the com-
bined fragment is the union of the two BUSY_Q sets.

3.3. Termination and Tree Refinement

The algorithm terminates when there is only one frag-
ment remaining, whose membership consists of the nodes
in Vm. At some point, additional changes to the multicast
group must be postponed so that a multicast tree can be
built. This can be done by bounding the number of joins
that a fragment accepts. Subsequent JOIN REQUESTs are
then processed as if the tree has already been built.

Once the algorithm has completed, it may be beneficial
to run an optional protocol that prunes leaf nodes that are
marked deleted or are Steiner nodes. The state informa-
tion maintained by multicast group members and Steiner
nodes may be reduced or eliminated once the tree is built.

4. Simulations

The simulation suite includes a network generation
program called Bessie [2] that generates and displays net-
work topologies as described by Waxman [13] and Doar
[6]. Bessie also provides an improved edge model to pro-
vide greater control over the generated topologies.

The simulator, mcSIM, was written in C using
CSIM18 [10]. The Phase I implementation is intended to
verify the correctness of the protocol without late joins or
leaves. (The Phase II implementation will include late
joins and leaves; Phase III will include fault-tolerance.)
mcSIM simulates the protocol running on every node in
the network. Nodes not interested in the multicast run a
low-cost Steiner code that just forwards messages and
consumes few resources. Any "intelligence" required in
the protocol occurs only in non-Steiner nodes. The tree
construction protocol terminates when the multicast tree
build is complete. mcSIM then writes an output file that
can be displayed by Bessie. Bessie checks the integrity of
the generated multicast tree and provides various statistics,
such as overall tree cost.

4.1. Simulation Results

The results of the Phase I implementation of the simu-
lator are shown in the following three tables, where
mcSIM is compared with Doar and Leslie’s protocol. The
results show the percentage improvement of our protocol

6

versus Doar and Leslie’s for 25 networks. In the first ta-
ble, networks with 10% multicast nodes and an average of
three links per node were simulated for varying network
sizes. The results show that, in some cases, our protocol is
significantly better, with an average improvement of about
25%. Similarly, in table 2, the network size is fixed at 200
nodes and the number of multicast members is varied. In
table 3, the average number of links is varied. All these
results show that our protocol produces high-quality trees.

Table 1. Avg. node degree = 3, 10% multicast nodes.

of nodes
Worst
Case

Average
Case

95% Conf.
Interval

Best
Case

50 -4.73% 24.85% 8.87% 82.37%

100 2.17% 27.78% 5.96% 54.96%

200 8.33% 26.92% 5.86% 76.61%

500 11.26% 24.50% 3.11% 41.31%

Table 2. 200 nodes, average node degree = 3.
%

multicast
Worst
Case

Average
Case

95% Conf.
Interval

Best
Case

5 2.12% 29.36% 8.21% 87.27%

10 8.33% 26.92% 5.86% 76.61%

20 11.02% 21.52% 2.78% 37.91%

25 8.68% 23.27% 3.30% 36.82%

30 7.95% 20.67% 3.08% 36.87%

Table 3. 200 nodes, 10% multicast nodes.
Avg Node

Degree
Worst
Case

Average
Case

95% Conf.
Interval

Best
Case

3 8.33% 26.92% 5.86% 76.61%

4 11.61% 33.09% 5.11% 70.95%

5 17.83% 38.51% 5.81% 73.43%

6 8.50% 44.92% 5.26% 69.79%

5. Conclusion and Future Work

We have presented a distributed algorithm for con-
struction of a multicast tree in environments in which the
multicast group membership is dynamic. Nodes may join
or leave the multicast while the algorithm is executing,
and concurrent membership changes are permitted. The
algorithm builds correct trees and integrates dynamic
changes to produce high-quality trees, even in the presence
of dynamic group membership

This algorithm is suitable for use in many situations
that require the generation of multicast trees. Examples
include multicast groups with mobile hosts and dynamic
regeneration of sub-trees that have experienced substantial
degradation due to local changes in the multicast group.

Future work includes extending the protocol to incorpo-

rate fault tolerance and building this algorithm into a mul-
ticast protocol that supports dynamic trees with periodic
rebuilds of locally inefficient sub-trees. This would be
useful for long-running multicast sessions with periodic
multicast group changes. The combination of our tech-
nique with geocasting algorithms for mobile networks [12]
is also under consideration.

6. Acknowledgments

The authors are very grateful to Christine Ciarmello for
editorial assistance.

7. References

[1] F. Adelstein, G. G. Richard III, and L. Schwiebert, “Distrib-
uted Multicast Tree Generation with Dynamic Group Member-
ship”, University of New Orleans, Computer Science Technical
Report UNOCS-TR97-01.
[2] F. Adelstein, G. G. Richard III, and L. Schwiebert, “"Bessie:
Portable Generation of Network Descriptions for Simulation,"
Proc. 7th International Conference on Computer Communica-
tions and Networks, pp. 787-791, October 1998.
[3] F. Bauer and A. Varma, "ARIES: A Rearrangeable Inexpen-
sive Edge-Based On-Line Steiner Algorithm," IEEE Journal on
Selected Areas in Communications, 15(3), pp. 382-397, April
1997.
[4] F. Bauer and A. Varma, "Distributed Algorithms for Multi-
cast Path Setup in Data Networks," Proceedings of GLOBECOM
'95, pp. 1374-1378, Nov. 1995.
[5] C. Diot, W. Dabbous, and J. Crowcroft, "Multipoint Commu-
nication: A Survey of Protocols, Functions, and Mechanisms,"
IEEE Journal on Selected Areas in Communications, 15(3), pp.
277-290, April 1997.
[6] M. Doar and I. Leslie, "How Bad is Naïve Multicast Rout-
ing?," IEEE INFOCOM, pp. 82-89, San Francisco, California,
March 1993.
[7] S. K. S. Gupta, and P. K. Srimani, “An Adaptive Protocol for
Reliable Multicast in Mobile Multi-Hop Radio Networks,” Proc.
2nd IEEE Workshop on Mobile Computing Systems and Appli-
cations, pp.111-122, February 1999.
[8] Y. Im, Y. Lee, S. Wi, and Y. Choi, "Delay Constrained Dis-
tributed Multicast Routing Algorithm," Computer Communica-
tions, 20(1), pp. 60-66, January 1997.
 [9] B. H. Ryu, M. Murata, and H. Miyahara, “A Dynamic Ap-
plication-Oriented Multicast Routing for Virtual-Path Based
ATM Networks,” IEICE Trans. on Communications, E80-B(11),
pp. 1654-1663, November 1997.
[10] H. Schwetman, “CSIM: A C-Based, Process-Oriented
Simulation Language,” Proc. 1986 Winter Simulation Confer-
ence, pp. 387-396.
[11] A. Shaikh, S. Lu, and K. Shin, "Localized Multicast Rout-
ing," Proc. IEEE GLOBECOMM '95, pp. 1352-1356.
[12] Y.-B. Ko, N. H. Vaidya, “Geocasting in Mobile Ad Hoc
Networks: Location-Based Multicast Algorithms,” Proc. 2nd

IEEE Workshop on Mobile Computing Systems and Applica-
tions, pp.101-110, February 1999.
[13] B. Waxman, "Routing of Multipoint Connections," IEEE
Journal on Selected Areas in Communications, 6(9) pp. 1617-
1622, December 1988.
[14] P. Winter, "Steiner Problem in Networks: A Survey," Net-
works, 17(2) , pp. 129-167, 1987.

