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Abstract  
Live forensic tools provide investigators with new sources of information.  Unfortunately, the 
amount of data gathered by such tools can be overwhelming, with a low signal-to-noise ratio.  
The authors use an innovative method of monitoring the resource use of running processes to 
build a profile of the application’s normal resource use, which they then exploit to filter out 
extraneous, forensically uninteresting data from a list of open file handles and dynamically loaded 
libraries attached to a process.  Preliminary results show a dramatic reduction in the number of 
file and registry handles and DLLs, greatly reducing the forensic haystack, allowing the 
investigator to more easily spot the needles. 
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1. Introduction 

As the field of live forensics matures, the investigator is gaining access to an abundance of 
information about the state of the system under investigation.  He can observe not only the 
currently executing processes and their files, but all resources associated with each process, 
including registry keys, network connections, and less interesting, esoteric items such as shared 
memory segments and mutual exclusion handles.   

The problem is that the investigator obtains too much information.  Consider the files the 
process has open, which typically include many files needed by standard libraries (DLLs) 
working on behalf of the process.  Processes using the network typically invoke DNS libraries 
and associated look-up functions.  The configuration files associated with these functions are not 
forensically significant when used in the standard way.  Such files provide little value to a 
forensic investigation but clutter the data space, rather than help the investigator zero in on useful 
evidence.   

This paper focuses on the problem of data overload.  Simply put, there is too much evidence 
available in digital forensic cases, and following dead-ends slows the analysis process.  A typical 
Windows process can have hundreds of loaded DLLs and handles.  For example, in one test 
Windows Explorer had 117 DLLs loaded, none of which were of particular interest. 

The current state of the art in forensics is filtering based on fixed patterns, which is at best 
tedious and error-prone.  There are standard search patterns to use (e.g., email addresses, credit 
card numbers, or names relevant to a case), but the overall method tends to be ad-hoc.  Generally, 
one can search for either information to keep or information to eliminate.  Such searches are easy 
to perform if one knows ahead of time what to keep or eliminate.  If one does not have a list of 
relevant search terms, then something must create a list to allow a program to automatically 
eliminate useless information.   

What is needed is a way to selectively filter out the extraneous pieces of information, while 
showing the useful information.  However, the choice of what to filter depends on the particulars 
of the process under examination. 

ATC-NY has addressed this problem with an advance in digital evidence analytics that helps 
investigators focus on potentially useful resources, such as files and registry keys peculiar to a 
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process.  To do so, we employ a tool, AppMon, which observes a running application (across 
multiple invocations, by multiple users) and builds an abstract profile of the normal resource use 
of that application.  As a proof of concept, we used the profile with our live forensic tool, OnLine 
Digital Forensic Suite™ (OnLineDFS), to filter out resources that the application often uses.  Our 
hypothesis is that the remaining information will be more interesting and much easier to peruse.   

The rest of the paper is organized as follows.  A description of OnLineDFS and the process 
data it gathers is presented in Section 2, Section 3 describes the resource profile and how it is 
generated.  Section 4 presents the results, and Section 5 discusses the conclusions and future 
work. 

2. Gathering process data with OnLineDFS 

OnLineDFS is a Web-based tool created by ATC-NY to gather volatile data from a live system 
with minimal impact to the running system [1].  It was one of the earliest products to gather 
volatile data in a systematic way.  Online DFS addresses both UNIX™ and Windows systems, 
but in this paper we focus on Windows computers. 

OnLineDFS provides extensive information about running processes.  It dispatches transient 
utilities to run on the target system to gather information.  The utilities generally send results in 
plain-text or XML.  The user interface presents the results to the user in HTML, through a web 
browser.  The “detailed process list” page combines results gathered from several utilities. 

In addition to general data about the computer, OnLineDFS gathers the following detailed 
information about each process: process name, process ID, user, command line, priority, start 
time, memory statistics, execution times (user, kernel, elapsed), open network ports, running 
threads, loaded DLLs, and open handles.   

As noted earlier, the last two items often include hundreds of entries.  For DLLs, OnlineDFS 
reports the version number and path for each loaded DLL.  Most DLLs are loaded from either 
“C:\Windows\system32” or a directory related to the program such as 
“C:\Program Files\Microsoft Office\...”  In addition, related system libraries tend to have similar 
version numbers (e.g., 5.01.266.2180 or 11.00.5601.0000).  While an investigator can spot 
outliers by sorting the results by version or path, the process of doing so is tedious and error-
prone. 

Online DFS reports the type and path for all open file and registry key handles.  The registry 
contains a wealth of information; but, many keys are not forensically significant.  For registry 
keys, the path is similar to a file path, e.g., 
\REGISTRY\MACHINE\SYSTEM\ControlSet001\Control\Nls\CodePage.   

3. Resource-usage profiles 

From a potentially very large number of resources in use by a process, we wish to filter out 
resources that are unlikely to be of interest in an investigation.  We begin by observing that each 
process is devoted to a single application.  The resources used by an application fall into four 
groups: 

Application-specific.  The application needs a given resource—e.g., file or registry key and 
obtains it by name.  An example would be the application’s initialization file.  On 
Windows systems, these files are typically found in the %homedrive%\program 
files folder. 

Application/user-specific.  The application maintains certain data per user—e.g., user 
mailboxes maintained by Outlook.  These files are typically kept in the %appdata% 
directory on Windows XP systems. 



Operating-system-specific.  A system library routine invoked through the application needs a 
particular registry key and obtains it by name.  An example would be the Windows 
initialization file or a registry key describing the local machine. 

Process-specific.  Some resources, such as user-specified files and temporary files, are 
peculiar to the process.  Other executions of the same application would not use files 
with these names. 

 
Based on this observation, we can now see that the forensic investigator is interested in just 

two categories of file.  The process-specific category is the most interesting when the focus of 
the investigation is a person using the computer as a common tool.  This category includes local 
copies of Web pages downloaded by a Web browser process and attachments to emails the target 
computer is either sending or receiving.  Application-user-specific files are also of interest, 
especially when more is known about the application.  This category includes mailboxes, contact 
lists, cookies, and (Web) bookmarks. 

Further, since the application must be able to find all but the process-specific resources by 
name, what is really needed are the names by which the process obtains its application-, system-, 
and application/user-specific resources.   

The names of many resources are easy to guess—especially files and registry keys required by 
an application.  For example, we would expect Outlook to use files whose pathnames begin with 
%homedrive%\program files\microsoft office or %appdata%\microsoft\outlook.  
However, that criterion is not adequate for large, complex applications.  In fact, Outlook also 
commonly uses files that a forensic investigator might not have predicted.  A partial list includes: 

%allusersprofile%\application data\microsoft\network\connections\pbk 
%allusersprofile%\application data\microsoft\office\data\opa11.bak 
%allusersprofile%\application data\microsoft\office\data\opa11.dat 
%appdata%\microsoft\office\mso1033.acl 
%appdata%\microsoft\office\msout11.pip 
%appdata%\microsoft\systemcertificates\my\certificates 
%homedrive%\program files\common files\microsoft shared\ink\penusa.dll 
%homedrive%\program files\messenger\msmsgs.exe 

A more systematic approach to obtaining the names of resources that an application 
consistently uses is to empirically collect data on the application’s resource use and create a 
resource-usage profile.  Such a profile should be independent of individual users, computers, or 
sites and should respect the application’s use of environment variables.  We have developed 
instrumentation to collect data on an application’s use of resources and software that reads the 
resulting traces and creates empirical profiles of an application’s use of files, DLLs, registry keys, 
and network addresses [9].  Within each resource category, the profile classifies each resource as 
application-specific, system-specific, or per-process.  (The per-application category also includes 
application/user-specific resources).   

The algorithm used to construct the profile is straightforward.  First, for each trace, collect the 
set of files that are accessed and how they are used (e.g., read or written).  Then correlate names 
and usage across traces to find names that are commonly used.  “Commonly” means that the 
names appear in traces from a certain number of distinct IP addresses.  Requiring that names be 
used on different computers prevents the inclusion of most user- and computer-specific resources.   

Such names are assumed to be either application- or system-specific.  System-specific files are 
located in certain well-known places in the file system.  The remaining common files are deemed 
application-specific.  Note that some names that the algorithm deems “application-specific” may 
not actually be known to the application.  For example, profiles for Outlook typically include files 
used by anti-spam add-ins, because they are so commonly used with Outlook. 

However, pathnames often include login names; using the “raw” pathname would cause the 
algorithm to miss common names.  To address this problem, the instrumentation also collects the 
definition of standard OS environment variables during execution of the process; for each file, it 



records all the ways of writing its name using the environment variables.  (Note: A given 
application may maintain some file pathnames in registry keys.  Our algorithm does not currently 
find such keys or extract the pathnames.)  For example, the pathname 
c:\documents and settings\fadelstein\application data\microsoft\office\
msoutll.pip might also be written 
%homedrive%:\documents and settings\%username%\application data\microso
ft\office\msoutll.pip or %appdata%\microsoft\office\msout11.pip.  Names are 
correlated across traces to find common variants in distinct traces.  The profile contains the most 
general common variant name—in this case, the name beginning %appdata%.   

This algorithm results, then, in a profile of the application-specific and OS-specific resources 
(files, DLLs, registry keys, and network addresses) that are commonly used in conjunction with a 
given application. 

3.1. How OnLineDFS uses the AppMon profile 

OnLineDFS uses the AppMon profile in a straightforward way.  Once the investigator has 
selected a profile to apply to a process, OnLineDFS reads the profile, and then iterates over all 
resources associated with the target process.  Resources found in the profile are suppressed; 
resources not in the profile are displayed to the investigator.  As a final step, all of the “esoteric” 
handles, including shared memory segments, semaphores, and mutual exclusion (“mutants”) 
handles, are also suppressed.  OnlineDFS uses the profiles to perform data reduction only, it does 
not “flag” any of the remaining data as abnormal.  Our goal is to reduce the amount of time an 
investigator must spend examining the details associated with the process data. 

3.2. Effects of Imperfect Profiles 

The technique of constructing resource-usage profiles based on empirical data collected from a 
set of computers has a long history in the field of intrusion detection (a partial list of papers in 
this field includes [2, 3, 4, 5, 6, 7, 8, 10, 11]).  Variations from the empirical profile are symptoms 
of anomalous code, which may indicate an attack.   

Anomaly detection based on empirical profiles is subject to both false positives and false 
negatives.  A false positive occurs when the program exhibits behavior that does not occur in the 
profile; for example, it may be caused by an uncommon but perfectly legitimate exception.  False 
positives occur in resource usage profiles, but their effect is innocuous: a false positive simply 
adds one to the length of a list of files or registry keys that the investigator must consider.  A false 
negative occurs when the program exhibits behavior that is in the profile but is nonetheless 
anomalous.  Mimicry attacks [12] succeed by imitating normal behavior.  In the context of 
forensic filtering, a false negative occurs when a file or registry key normally used by the process 
is filtered out, although it should not be.  For example, the program may often write to a certain 
registry key.  In the target process, the user explicitly causes a write to that registry key, but the 
registry key is hidden because of the filtering.  Note that the only resources that can be hidden in 
this way are those normally used by the program.  Therefore, this can only be a cause of concern 
in cases where the malicious action of the user is focused on such a resource.  For example, a user 
might move a file containing illicit material to the location of an application file that he knows the 
application will not use on his behalf.  However, we do not consider this a major concern.  
Current digital forensic tools can identify file type/file name mismatches, such as a jpeg image 
file with a .dll suffix.  While this process is slow for large disk images, it is what is currently 
done.  The method presented in this paper is intended to reduce the time investigators must spend 
examining certain resource lists; it does not replace existing techniques and methods. 

The investigator is first presented with the unfiltered results.  He then applies the filter to 
reduce the amount of information to review.  If no promising leads are found, the investigator 



must revert back to the unfiltered results and examine the remaining data.  There should not be a 
significant impact from a legal point of view.  The filters are analogous to performing a regular 
expression search for email addresses or URLs on a disk image.  In both cases, the defense would 
have access to the raw data and could investigate it as they wish. 

Many uses of anomaly detection are based on sequences of kernel calls [2, 3, 4, 6, 7, 8, 10, 11].  
A concern in such systems is the sensitivity of the profile to small changes in the code.  We 
expect the resource usage profiles described in this paper to be relatively insensitive to such 
changes.  Patches and minor revisions to a program do not typically change its use of registry 
keys and files.  In fact, we have found that most revisions to a program have little or no effect.  
We commonly create new resource usage profiles only for major revisions to a program (e.g., 
from Firefox 2 to Firefox 3).  Similarly, small changes to the operating system have no perceived 
effect.   

4. Results 

We have compiled profiles for the following XP and Vista applications: Acrobat, Acrobat 
Reader, Excel, Firefox, MS Calculator, Outlook, WordPad, Word, and Notepad.  The tests were 
performed using the 32-bit Windows XP operating system for our tests. 

The processes were stock programs running no hidden functions.  The processes executed 3 
different common applications: Word, Excel, and Outlook.  We selected those programs because 
they are commonly used and complex, generating a long list of DLLs, open files and registry 
keys.  The test consisted of starting the program and performing some routine actions, such as 
entering text into Word or reading a message and opening the attached file.  Then, we created a 
forensic snapshot under OnLineDFS using its “initial acquisition” feature.  The initial results are 
promising. 

In every case, the displays of both DLLs and keys shrank dramatically, as shown in Figure 1.  
The filtered list of DLLs generally fit on a single page, and the handle list, while longer, was 
much more easily perused. The filtering process did not remove any significant data, such as the 
.doc file that Word was editing or the Acrobat process started by Outlook on a PDF attachment.  
Note that some of the reduction in the number of handles, especially Outlook, is due to the 
automatic filtering of all “esoteric” handles, specifically events, which are unrelated to the 
resource profiling.    

The number of files, however, remains almost the same.  We believe this is caused by the way 
applications use files.  The forensic snapshot represents a very small amount of the total run-time 
of the application.  For most of an application’s run time, few files are held open continuously.  
Most applications open a file, perform the read or write action, and then close the file.  Therefore, 
it is unlikely that the forensic snapshot will record many open files. The forensic snapshot records 
many “device” files, e.g., \device\tcp, which is not considered a resource by our AppMon code 
and will not appear in our profile.  And finally, the current version of our filtering code only 
removes the first occurrence of a resource that appears in the profile.  Future versions of the code 
will remove all duplicates.  We note that duplicate file and registry handles commonly occur.  
While the removal of duplicates will significantly improve the results shown in Figure 1, it is 
tangential to the improvements from profiling, as is the suppression of the shared memory and 
other esoteric handles.  The results presented in Figure 1 are due only to the profiling. 

 



 
Figure 1. Number of  profile entries with and without filtering 
 

5. Conclusion and future work 

The preliminary results are encouraging.  In general, the filtering process significantly reduces 
the DLLs and handles displayed significantly.  We used the Microsoft Office tools as examples 
because they are of general interest and tend to use a large number of DLLs and handles.  By 
adopting a principled way to automatically filter uninteresting data from running processes, live 
forensic tools can provide a higher quality of data, which enables investigators to more quickly 
find forensically significant data, such as user-specified files written by a process or registry keys 
that contain process-state information.   

While the tests were based on applications for which profiles already existed, an investigator 
could easily generate profiles after taking the forensic snapshot.  Therefore, this filtering 
technique is not limited to processes for which a profile currently exists. 

Incomplete profiles act like less efficient filters; they allow some useless data to be displayed, 
but still filter out most chaff.  It is unlikely that profiles contain forensically useful data.  An 
investigator who is interested in files or keys that the application always uses can turn off filtering 
(by default it is off).   

Future work includes duplicate handle suppression, more extensive tests, additional profiles, 
and tools to automate data collection for profiles.  While the profile generation is automated, 
users are required to execute the applications, performing tasks to select menus, click on buttons, 
and provide input.  Another avenue for future work is to determine the effectiveness of profiles 
that were generated very quickly, for example, profiles that were created by starting an 
application and selecting only a few standard menu items such as File->new, File->Save As, and 
File->Print.  Other work includes exploring different filtering methods and isolating 
application/user-specific resources.   
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