
COMMUNICATIONS OF THE ACM February 2006/Vol. 49, No. 2 63

ifteen years ago, servers for university computer science departments used
disks with 2GB capacity; indeed, 1MB floppy disks were still useful. Many
computers were connected to the Internet, many of them malicious, many
at low, dial-up speeds of 9.6Kbps.

But, thanks to Moore’s Law, that scale of operation is now considered meager.
Today’s desktop computers commonly have 2GB of memory, and more than
100GB of disk space. A 10-person company can have over a terabyte of disk
space on its desktop machines alone. Home computer users connect to the
Internet with high-speed links of 3–6Mbps, rivaling the bandwidth of smaller
CS department networks not long ago.

DIAGNOSING YOUR SYSTEM
WITHOUT KILLING IT FIRST

F

By FRANK ADELSTEIN

Live Forensics:

Live forensics gathers data from running systems, providing additional contextual
information that is not available in a disk-only forensic analysis.

64 February 2006/Vol. 49, No. 2 COMMUNICATIONS OF THE ACM

The nature of digital forensic investi-
gation has therefore changed.
Larger disk capacities increase the

time required for analysis and the difficulty and
expense of collecting all disk evidence. The pervasive
nature of the Internet makes contextual information
more important—specifically, who is connecting to a
machine and what they are doing.

In the traditional “snatch and grab” approach to
computer forensics, an investigator pulls the plug on
the machine, and then images (copies) the disk, either
on site or (after confiscating the machine) in a lab. An
analyst examines the image (actually a copy of the
image) in a controlled environment—by repeatable
steps on whose results both prosecution and defense
will agree.

This approach has several drawbacks. First, it may
not be possible. As systems continue to increase in
size, terabytes of disk data are no longer uncommon
and imaging can take many hours. Imaging is not
possible, or at least extremely difficult on NAS, SANs,
and large RAID arrays. The time and effort needed
for analysis increases with the disk size. A person can
quickly peruse all the sectors on a 1MB floppy disk.
Manual scrutiny of a 1GB disk is not feasible; auto-
mated analysis assistance is required. Even automated
analysis of a terabyte of data is slow [5].

A disk is offline while being imaged, but for many
systems—such as e-commerce systems—the loss of

revenue from even a few hours of downtime is unac-
ceptable. As a result, many judges no longer issue
court orders to take down servers.

And, finally, much information about what is hap-
pening on a running system is lost when the plug is
pulled. This information provides the context for the
disk evidence. Traditional digital forensics attempts to
preserve all (disk) evidence in an unchanging state,
while live digital forensic techniques seek to take a
snapshot of the state of the computer, similar to a
photograph of the scene of the crime. For these rea-
sons and more, interest in, as well as a need for, con-
ducting a forensic analysis of live systems has
escalated.

A warning and disclaimer: It is very easy to conta-
minate the evidence on a system. The many subtle
points and quirks of various operating systems, as well
as all the rules, constraints, and limitations imposed
by the applicable legal system are beyond the scope of
this article. Therefore any forensic investigation
should be conducted by a professional.

WHAT INFORMATION IS AVAILABLE?
Information available from a live system provides a
context for the disk data—for example, running
processes, network connections, memory (process
and physical), and other state items such as caches,
logged-on users, and system load. Live analysis can
capture both this volatile information and static
information about the file system. Currently, most
forensic tools use the operating system itself to
obtain this information. If a machine has been com-

Traditional digital forensics attempts to preserve all
(disk) evidence in an unchanging state, while live digital forensic

techniques seek to take a snapshot of the
state of the computer similar to a photograph of the scene of the

crime. For these reasons and more, interest in,
as well as a need for, conducting a forensic analysis of

live systems has escalated.

promised, its kernel can be malicious running code
(a rootkit) that prevents the operating system from
reporting the existence of processes and files. While
there are programs that can detect the presence of
rootkits (such as chkrootkit from
www.chkrootkit.org), little can be done if a rootkit is
present except to fall back to the traditional
approach.

A big concern in live digital forensics is that the sys-
tem is not static—files and processes are continually
changing. However, this does not necessarily invali-
date them as evidence. For example, even though the
system log files will continually change and new mail
continually arrives, this activity will not create an
incriminating email message sent by the suspect days
before the system is imaged. In addition, disk buffers
may not have been written to disk due to caching. In
other words, the context of the evidence is significant.
The time stamps associated with the files, called
“MAC time” (modify, access, and “create” times),1 can
help establish this time context.

ACQUIRING THE EVIDENCE

An investigation is an iterative process: repeatedly
acquiring and analyzing data until a decision can be
reached [1]. The investigator acquires the volatile
state of the running machine by running programs
on it. Since gathering evidence on the target can
affect other evidence on the target, a set of best prac-
tices has evolved to maximize the quality of the evi-
dence. Here, we discuss three of the most important
practices.

Running known good binaries: An investigator
should not trust the executables on the running sys-
tem, but should provide all of the executables used for
gathering evidence. The executables should be stati-
cally compiled, if possible. Otherwise, they should
include any shared libraries required by the exe-
cutable. The programs should originate from a read-
only medium, such as a CD-ROM. The executables
can be copied to the running system; however, this
action will affect the disk, possibly overwriting evi-
dence residing in deleted files. If the choice is between
losing some evidence by overwriting and losing all evi-
dence by not obtaining the information, it is better to
risk the minor damage from copying files to the target
system.

Hashing all evidence: Once acquired, evidence must
be preserved in a way such that the investigator can
later demonstrate that nothing has changed. The
accepted method is to compute a cryptographically

secure hash of the data (typically via MD5 or SHA-1).
The hash represents a fingerprint of the data with a
small number of bytes, typically 16–20. The hash can
be recalculated later and compared with the original
to show the data has not changed from the time the
original hash was obtained. If data is transmitted over
a network from the target to another machine, the
hash should be computed on both machines and
compared to ensure no data changed in transit. Both
the hashes and the evidence should be maintained in
a secure location. Typically, an investigator preserves
the integrity of the hash itself by signing and dating a
printout of the hash and storing this in a secure loca-
tion.

Gathering data in order of volatility: Some data is
more ephemeral than others. Evidence should be
gathered based on the Order of Volatility [4]. For
example, open network connections change more fre-
quently than the system load average or the users
logged on to the system. Some actions may affect
other data. For example, logging in to a system may
generate entries in the system log files.

Complicating matters is the time required to gather
evidence may depend on the kind of evidence gath-
ered. A dump of the physical memory of a machine
may be useful and is very volatile, indicating it should
be accomplished early in the investigation. However,
it can take tens of minutes to complete, and during
that time, more useful information such as the lists of
running processes, open files, and network connec-
tions, will have changed or disappeared. And while
overall the system RAM is continuously changing,
many memory pages may linger for a considerable
time (days or weeks) on a modern system with 1GB
or more of memory. In other words, the investigator
must be aware of the overall context of the investiga-
tion in order to make informed decisions on the order
of evidence acquisition.

PUTTING IT ALL TOGETHER

Once evidence has been acquired, it must be ana-
lyzed. In traditional forensics, the analyst gathers all
potential evidence prior to analysis. It is often
impractical to gather all possible information avail-
able to a live forensic examination. An investigator
may therefore perform a triage and gather the essen-
tial data, examine it, and use the results of the first
look to decide what else is needed. So for live foren-
sics, the analysis step may lead to further acquisition
of data. A live analysis creates opportunities for faster
response.

Consider an example: The investigator receives a
report of a slow Web server. He obtains a list of run-
ning processes and the network ports they have open.

COMMUNICATIONS OF THE ACM February 2006/Vol. 49, No. 2 65

1
The C time is sometimes referred to as the (inode) “change” time on Unix operating

systems.

One process has a connection to a high port number
on an unknown system. The process also has a file
open for writing. The file is a log of all network traf-
fic, which indicates the process creating it is a network
sniffer, most likely looking for personal information,
passwords, among others.

This information could not be obtained by an
after-the-fact analysis. In particular, the IP address
and port of the unknown system could not be deter-
mined without a live forensic analysis.

CONCLUSION

Forensic data gathered from a live system can pro-
vide evidence that is not available in a static disk
image. Live forensics also operates with different
constraints—specifically, the evidence gathered rep-
resents a snapshot of a dynamic system that cannot
be reproduced at a later date. Standards for accep-
tance are evolving, and legal precedents are still
being established. An investigator faces risks that
include evidence contamination and facing a court
that does not understand the implications of the evi-
dence. Because of the increase in the quantity of dig-
ital evidence available in everyday life, it will soon
become impossible to acquire all disk data relating
to a case. The paradigm of live forensics will become
the accepted norm.

Live forensic data has been accepted in court cases,
and tools exist to gather and analyze this evidence.
But the field is still relatively new. Progress in several
areas will be essential to increase the usefulness of live
forensics, including tools to automate and standardize
the process of evidence acquisition and preservation,
and presentation tools that allow an investigator to
present the facts clearly to a court.

Live forensics requires more effective memory
analysis tools. Currently, it relies on the (possibly
compromised) operating system to provide the list of

running processes. Live forensics needs tools to exam-
ine the raw memory of a machine and impose a
process (and virtual memory) structure on the blocks
of memory. These tools are analogous to the static
tools that open the raw disk device and impose the file
system structure on it to extract files, directories, and
metadata.

Most memory analysis tools do little more than
extract strings (ASCII for the naïve approach, Uni-
code for the more sophisticated). None imposes any
process structure that provides application-specific
information. Unfortunately, limited interest exists in
decoding memory images because no one has done it,
and no one has done it because the interest is limited.
Gathering useful time-sensitive data and coupling it
to fast, real-time analysis will provide new capabilities
and insight for digital investigations and incident
response.

References
1. Adelstein, F. The mobile forensic platform. In Proceedings of the 2002

Digital Forensic Research Workshop. (Syracuse, NY, Aug. 2002).
2. Carrier, B. File System Forensic Analysis. Addison-Wesley, Reading, PA.,

Mar. 2005.
3. Casey, E. Digital Evidence and Computer Crime. Academic Press, Mar.

2004.
4. Farmer, D. and Venema, W. Forensic Discovery. Addison-Wesley Profes-

sional, Dec. 2004.
5. Roussev, V. and Richard III, G.G. Breaking the performance wall: The

case for distributed digital forensics. In Proceedings of the 2004 Digital
Forensics Research Workshop (Baltimore, MD, Aug. 2004).

Frank Adelstein (fadelstein@atc-nycorp.com) is the technical
director of computer security at ATC–NY in Ithaca, NY. He is the
designer of the OnLine Digital Forensic Suite™ tool.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0200 $5.00

c

66 February 2006/Vol. 49, No. 2 COMMUNICATIONS OF THE ACM

Because of the increase in the quantity of digital evidence
available in everyday life, it will soon become impossible to acquire all

disk data relating to a case. The paradigm of live forensics will
become the accepted norm.

