

Abstract—We describe min-c, a C interpreter that solves the

generalized problem of the “semantic gap”. The semantic gap

exists in virtual machine introspection (VMI) and in volatile

memory forensics because there is not a native hardware

environment. For example, a pointer in a data structure in a

process cannot be used without translation to a physical

address, a function of the native hardware and operating

system. The usual solution is to build an OS interface library to

provide the necessary translations. This is brittle as it must

constantly track OS versions. Min-c solves this problem by

enabling automatic generation of the OS interface library using

native OS code itself, or debugging symbols when source is not

available. We describe the design of min-c and our method for

automatically building the semantic interface database required

for type interpretation for both Linux and Windows OSs.

Index Terms—Forensic Memory Analysis, Virtual Machine

Introspection, Semantic Gap, Volatile Memory, C Interpreter

I. INTRODUCTION

N volatile memory forensics and virtual machine

introspection (VMI) it is necessary to interpret, at a high

level, the state of a system which has only been recorded at a

very low level. Effective techniques for doing this are

increasingly necessary. Most forensics investigations

currently are centered on non-volatile storage (hard disks).

Hard disk capacities are enormous, however, and the use of

encrypted file systems is increasing. Volatile memory can

often provide evidence, such as encryption keys, which makes

analysis of non-volatile storage faster and easier.

The motivation for VMI is quite different. Sophisticated,

stealthy malware (e.g., rootkits) can subvert operating

systems entirely, disabling and hiding from the most

sophisticated computer security software. It is always

possible for the malware to discover, disable, or hide from

security software because it runs on the same machine. In

light of this, many have proposed and demonstrated

approaches based on VMI. This ―out-of-the-box‖ technique

H. Inoue, F. Adelstein, M. Donovan, and S. Brueckner are with ATC-NY,

Ithaca, NY 14850 USA (e-mail: {hinoue, fadelstein, matthew, steve} @atc-

nycorp.com). This research was supported by the Air Force Research Lab under

award FA8750-07-C-0106. The opinions, findings, and conclusions or

recommendations expressed in this publication are those of the authors and do

not necessarily reflect the views of the Air Force Research Lab.

allows security software to run in a trusted environment

completely outside the OS and the applications it observes.

Both techniques require one machine to interpret the low

level state of another machine. VMI applications (we refer to

the VM hosting the introspecting application as the host) use

the hypervisor to directly access the state of another VM's

(the guest) virtual hardware, including the processor,

memory, and devices (e.g., disk and network). In volatile

memory forensics, the available resource is a core-dump or

raw memory image.1 The difficulty in interpreting this low-

level data into a high-level model of the guest system's state is

referred to as the semantic gap [1].

The two research communities focusing on this problem

have, until recently, been quite distinct. However, we noticed

in the course of our VMI research that the problem posed by

VMI is identical to that posed in forensics. The goal of our

research was to develop a model of the guest's kernel memory

space using the semantics of its operating system – the

common problem in forensics and VMI. VM introspection

libraries supply processor state, and accessing the file system

is fairly straightforward [2]. Network operations can also be

captured and interpreted easily from outside the VM. The

VMI problem is more difficult in that it must not cause side-

effects within the guest, and it must also run efficiently, so

that real-time monitoring is possible. We therefore

concentrate on VMI in this paper, although our technique

applies generally to volatile memory forensics as well.

Others (described in Section V) have addressed the

semantic gap problem but each proposed solution has

limitations. Operating systems may be categorized into major

classes (e.g., Windows XP, Vista, Linux 2.4, Linux 2.6), but

there is significant variation within each major class that

previous efforts do not address. First, they do not account for

versioning. Modern operating systems are patched quite

frequently, requiring either modification or at the very least,

recompilation, of the introspection software. Second, in open

source operating systems such as Linux, kernels are

customized by distributions or even by individuals

themselves.

Due to these two factors, the semantic gap-bridging software

1
 For the purposes of this paper, we will refer to the analysis machine as the

host and the machine where the memory image was gathered as the guest.

Automatically Bridging the

Semantic Gap using C Interpreter

Hajime Inoue, Frank Adelstein, Matthew Donovan, Stephen Brueckner

I

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

Fig. 1. A comparison of a security monitor using VM introspection with min-c (left) and similar software hosted in the traditional manner (right).

of previous efforts have been prototype implementations

written for specific kernel versions that are brittle in the face

of changes to those kernels. In addition, each previous effort

required manual labor to acquire detailed knowledge of each

guest's data types (including the fields of aggregate types) and

magic numbers (i.e., memory locations, including relative

offsets within aggregate types). This manual labor can

include inspection of available files (e.g., symbol tables,

header files, source code), reverse engineering, kernel

debugging, and trial-and-error coding. For example,

Volatility [8], the most popular tool for volatile memory

forensics, only supports Windows XP; it does not yet support

Windows Vista or Windows 7.

Based on the shortcomings of previous efforts, we

determined that a useful solution for bridging the semantic

gap should be both general and automatic. That is, it should

enable us to run any version or distribution of a major OS

class without recompilation of the introspection code and

without the need for manual intervention in the process.

Finally, a solution that bridges the semantic gap should

minimize the distinction between guest and host. It should be

easy to reuse and port security software. Developers should

not need to learn an introspection API or language, as

previous solutions have required. In short, we want our

introspection layer to be invisible—host code should look and

run as if it were in the guest.

Given these desiderata, we implemented a C interpreter,

linked with an introspection library. It currently runs a large

subset of the C90 standard.2

In addition, we have generated semantic reconstruction

libraries that allow us to automatically locate and properly

interpret data structures in both the Linux and Windows

kernels. We call our semantic gap-bridging software min-c,

which integrates our C interpreter and semantic

reconstruction libraries. Fig. 1 shows how we use

introspection and min-c to achieve our objectives and

compares them to traditional non-introspective security

software running inside a guest.

Min-c is an abbreviation for ―EXAMIN-C.‖ EXAMIN is a

commercial project with the goal of developing a testing

platform for containing, triggering, analyzing, and reverse

engineering stealthy malware. It is a VM-based workbench

based on the Xen hypervisor that employs VM introspection

to provide high-assurance detection of stealthy malware on

both Windows and Linux platforms. EXAMIN incorporates a

number of practical tools based on our introspection

2
 C90 was chosen for its ease of implementation. We may switch to C99 in

the future. The interpreter does not currently support some data types, such as

ones we have not encountered in the Linux and Windows kernels (e.g., floating

point).

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

Fig. 2. Memory layout of a min-c application. Interpreter translates pointers by subtracting map offset stored in address map from pointers in mapped regions.

techniques, including integrity monitors and cross-view

checkers.

Min-C forms the core of EXAMIN. In the rest of the

paper, we describe how min-c solves the various problems

involved in practical VM introspection and bridging the

semantic gap. We begin by presenting our min-c design. We

first describe how we automate the gathering of kernel-

specific semantic information and then how we integrate this

information with our C interpreter. Next, we describe our

current applications of min-c. Finally we discuss the

limitations of our approach and describe future and related

work before concluding the paper.

II. DESIGN

The min-c interpreter consists of the following four

components, each of which we subsequently describe in

detail:

1. the introspection library,

2. the C parser,

3. the core interpreter, and

4. the semantic interpreters.

We used the open source XenAccess library to provide VM

introspection of the Xen hypervisor [3]. We modified

XenAccess to provide the ability to memory map a range of

contiguous virtual memory from the guest into the host's

address space. This is the principal introspection mechanism.

XenAccess also provides access to files, enabling volatile

memory forensics investigations as well.

We built the C parser with the aid of the TreeTop parsing

library for the Ruby programming language [4]. The C

parser reads in the source text and generates custom bytecode.

Our parser performs type checking, but our custom bytecode

instruction set does not embed type information such as size

or offset information. Instead, type information is retrieved

(for host datatypes) or calculated (for guest datatypes) during

execution, because the version of the OS is not determined

until runtime.

The core interpreter executes the bytecode generated by the

parser. It uses the XenAccess library to map guest kernel

memory into the host's address space and then operates on

that memory similar to the way it operates on unmapped

memory. The only exception is in the use of pointers: the

address space mapped into the host makes pointers

inconsistent. A variable referred to by a pointer in the guest

has a different address on the host. The min-c interpreter

keeps track of which portions of memory are mapped in from

the guest and translates pointer addresses appropriately.

Fig. 2 shows how the map of the physical memory of guest

OS is mapped into the process space of min-c. In the figure,

the OS memory is contiguous in physical memory, which is

usually the case. It is also possible to map the virtual address

space of a user process, which is usually not physically

contiguous, into a min-c application. A min-c application has

five

logical memory areas: the mapped memory from the guest,

the min-c interpreter itself, the min-c application's code (local

code), its heap (local data), and the address map.

The address map is used by the interpreter to translate

pointer addresses. It is a table which describes the mapping

between the virtual address space of the guest and the virtual

address space of the min-c application. When a min-c

application reads a pointer, the interpreter consults the table

to determine if it is in a guest-mapped space. If it is, then the

pointer is read from the mapped space and then the map

offset between the two spaces is added so that the new pointer

is accurate. Note that the interpreter must understand that the

value being read is a pointer. Applications that treat pointers

as integers will not have these values properly translated.

Thus, developers need to take particular care with types or

memory corruption will immediately result.

Our semantic interpreters provide type and layout

information for data structures within the guest. Semantic

view reconstruction begins with an address and a type. If we

have information about the type, we can then understand the

region of memory specified by the address in terms of

operating system semantics. If the type contains a pointer, we

can then recursively apply this procedure to the address and

type referred to by the pointer. In this way, we can rebuild

the semantic meaning of the address space within the guest.

In Section V, we describe the manual and debugger-

oriented procedures previous efforts have used to generate a

semantic view of the guest's memory. As discussed in Section

I, the procedures used in previous efforts are brittle and

difficult to use with heterogeneous systems. In order for our

semantic interpreters to automatically reconstruct a semantic

view of the observed guest kernel, we need the data structure

layout created by the compiler. For Linux, compiling the

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

observed kernel with debug symbols would give us access to

this information, but unfortunately this would change the

resulting image. For Windows, source code is not available

so recompilation is also not an option. We extract the data

structure information using a unique procedure for each

major class of operating system, as follows.

For Linux, the GCC compiler can output a kernel's

intermediate representation as a flat file database (.tu) in text

format using the --fdump-translation-unit flag [5]. Since

source code and kernel configurations are available for each

Linux distribution, we can recompile each kernel of interest

in this manner a single time, and use the resulting .tu files for

all subsequent introspection activities. We do not need to

replace the original guest kernel with the recompiled one

because they are identical (We delete the recompiled one,

saving only the .tu files generated by the compilation

process). The objective is to generate the equivalent of

debugging information without having to compile the kernel

with a debugging flag. The .tu files give us access to the type,

size, and layout information needed to automate semantic

view reconstruction. Addresses are not available in the

intermediate representation (these are generated by the

linker), so we use the System.map file generated by the kernel

compilation process (and usually exported in the /boot

directory) to obtain them. The System.map file gives us

exported addresses, but does not give us other important

addresses, such as the location of the system call table, which

we obtain through forensic processes that are automatable for

each major kernel version.

For Windows, the compiler generates a Program DataBase

file (.pdb) that contains the necessary symbol and type

information [6]. An executable file (.exe or .dll) stores the

name of its associated .pdb file as well as the version

(specified by a globally unique identifier and age value).

PDB files can be made available by an application developer,

or in the case of Microsoft's executables (such as the

Windows XP, Vista, and 7 kernels), are downloadable from

Microsoft's Windows Symbol Server. Dynamic Link

Libraries (DLLs) export public symbols for use by other

applications but non-public symbols are stripped out during

the compilation process. PDB files contain both public and

private symbol information, such as addresses, as well as

function signatures and their locations. Addresses are stored

as Relative Virtual Addresses (RVAs) that are simply offsets

from the start of the file when loaded into memory [7]. PDB

files also contain data type information similar to that

available in Linux .tu files.

Not all relevant information is provided by PDB files.

Many internal data structures are not described, nor are many

addresses which are useful for VMI or forensics. When

structures or addresses are not available, developers in min-c

can supplement this with files written in C. This is a key

advantage of min-c, since it allows developers to augment the

interface library and analysis scripts in the same language

they use to write native OS code itself, and in a way that

makes calls to the interface library implicit, as we show in the

next Section.

Fig. 1 shows how four parts (the introspection library, C-

parser, core interpreter, and semantic interpreter) compose

the min-c interpreter and conduct semantics-aware VM

introspection of a guest's kernel. A complete program is

created when min-c extracts, interprets, and combines the

source code (.c) file with the semantic information database

(.tu or .pdb) files. The core interpreter uses local resources to

execute, but redirects introspection queries to the guest via

XenAccess. It accomplishes this by tracking and maintaining

consistency of separate data types and pointers for each

domain.

III. CURRENT APPLICATIONS

We currently use min-c within our EXAMIN platform for

TABLE I

PROGRAMS FOR LISTING LOADED MODULES

WITHIN A GUEST VM RUNNING LINUX 2.6 KERNEL

XenAccess Specific Partial Listing

xa_read_long_sym(&xai, ―module‖, &next_module;

list_head = next_module;

while(1) {

 memory=xa_access_virtual_address(&xai, next_module, &offset);

 if(memory == NULL) {

 perror(―failed to map memory for module list pointer‖);

 goto error_exit;

 }

 memcpy(&next_module, memory+offset, 4);

 if(list_head == next_module)

 break;

 /* Note – the module struct that we are looking at has a string directly

following the next/prev pointers. This is why you can just add 8 to get the

name. See include/linux/module.h for more details. */

 name = (char *)(memory+offset+8);

 printf(―%s\n‖, name);

 munmap(memory, xai, page_size);

}

Min-c Equivalent

/* Pull address from System.map */

extern struct list_head module* modules;

struct list_head* next_module = modules;

while(1) {

 struct module tmp;

 next_module = next_module->next;

 if(modules == next_module)

 break;

 tmp = list_entry(next_module, struct module, list);

 puts(tmp->name);

 puts(―\n‖);

}

On the top is a partial source listing that uses only the XenAccess library. On

the bottom is the mini-c version. Note: We ignore locking in this example.

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

cross-view checking and integrity checking. Rootkits hide

their presence from both user-space and kernel-space

applications. Cross-view checking tools compare the state of

the guest as reported from within (the guest) with that

reported from without (the host) using VM introspection.

Differences often indicate that stealthy malware has infected

the host.

The min-c interpreter makes it much easier to write cross-

view checking tools. To illustrate, consider Table I, which

shows the listing for VM introspection code that outputs the

list of modules running in a Linux system. Using only the

XenAccess VM introspection library, the code is awkward,

and relies on hardcoded offsets for linked-list pointers and the

name string. Min-c, however, automatically reconstructs a

guest kernel's datatypes and offsets, so its code is identical to

that written for a kernel module. It is shorter, easier to

understand, easier to write, and will run on many different

versions of Linux, since the structure is interpreted at

runtime, instead of compiled.

Our integrity checking tools monitor portions of the guest

kernel's memory to detect tampering. During execution, the

kernel code and many of its variables should not change

frequently after initialization. For our EXAMIN

implementation, integrity checking tools repeatedly poll code

and selected structures, such as the system call table or

interrupt descriptor table, for modification. Changes can

indicate a rootkit infection.

Our integrity checking tools can also take advantage of

min-c's semantic reconstruction capabilities. Rather than

simply detecting a change to a data structure, we can describe

the change. For example, when the system call table is

―hooked,‖ min-c can provide the name of the specific call that

was altered and locate the memory space to which it now

points.

IV. DISCUSSION

The min-c interpreter effectively achieves our goals; it

automatically bridges the semantic gap in a manner that is

general to major kernel classes. Users do not have to learn a

new API or language, and can use the native language (C) of

the operating system to write scripts that look like kernel code

running in the guest.

We have rewritten the larger examples provided with

XenAccess in min-c style.3 We have scripts identical to code

written for the kernel, which execute properly for multiple

versions of Windows and Linux. Our scripts list current

processes and drivers (modules in Linux). We have

developed cross-checkers for the system call tables for

Windows and Linux which will inform administrators when

the system call table has been modified, and which system

3
 The minor examples supplied by Xen Access are implicitly provided by

min-c functionality.

calls have been hooked, which can help identify which rootkit

is responsible.

This functionality forms the basis of our EXAMIN system,

which is intended as a malware incubator. We can easily

write new monitoring scripts for the system. Debugging is

quite easy; we find that we can write Windows drivers and

Linux modules to monitor kernel state directly, and then run

them in min-c.

EXAMIN is clearly beneficial as a security and reverse

engineering tool. It also can be useful as a tool to aid digital

forensic analysis, in particular analysis involving live systems

and volatile data, such as live memory. The interest in live

memory analysis is growing rapidly, and while many

advances have been made in recent years, there are relatively

few tools to bridge the semantic gap.

Volatility [8] is probably the best known tool to conduct

memory analysis, but until recently it relied on a pre-existing

memory image. Simply getting the memory image can be

challenging [9]. We became aware during the implementation

of min-c that the Georgia Tech group responsible for

XenAccess added hooks that enable Volatility to access live

VMs, giving it similar introspective capabilities to min-c

[10]. Similarly, XenAccess also supports access to memory

dump files. While Volatility currently has more analysis tools

than min-c, we believe that the min-c approach is superior

because new tools for Volatility must be written in Python

and use explicit translation libraries. Min-c can make writing

new tools much easier. New system analysis tools will use or

reuse code that is almost identical to the equivalent kernel C

code. It also allows a single tool to target multiple versions of

an OS, because the interpreter links in the appropriate

translation library at runtime. With Volatility, this is not

possible.

Because EXAMIN uses VM introspection, it has essentially

no impact on the running system and is very unobtrusive.

These qualities are highly desirable for forensic analysis [9].

EXAMIN can help analysts conduct an investigation of a

running system to find data that may only reside in memory,

or may locate data that are essential for a traditional disk

analysis, such as whole-disk encryption keys, whose absence

render the data on a disk useless.

A. Limitations

There are still several limitations to min-c that hinder its

application to other problems.

First, we cannot read guest memory that is paged out to

disk. This is not a problem with our current EXAMIN

objective of kernel monitoring because kernel memory for the

kernel structures that are required by our tools is never paged

out.4 To monitor guest memory for user-space applications

would require modification of the guest: injecting code to

induce page faults, causing the desired application pages to be

read back into core. Although this is possible, our current

4
 Volatility does not have this ability, either.

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

goals are to perform introspection without directly tampering

with the guest, allowing security services to remain invisible.

Currently, no volatile forensics applications support

examination of paged-out memory, either. It may be more

straightforward to implement support for this for forensics,

where everything is on a file system, than on an executing

system where memory and the file system monitoring must

maintain consistency.

Also, because our introspection method is based on polling,

we cannot detect changes when they are quickly reversed.

This possibility becomes less likely if our scripts poll more

often, but the cost is decreased performance. We can fix this

problem using memory access alerts (Section IV-B), but this

will require modifications to the Xen hypervisor.

Because persistent malware is much more likely to be

detected through file system virus checkers or similar

software, we believe memory-only rootkits are becoming more

common, and the min-c approach is most effective against

them.

Third, the performance of min-c is limited by the fact it is

interpreted rather than compiled. There are two reasons for

choosing to run interpreted. First, data structure layout

differs depending on patch-level in Windows and kernel

configuration and compiler version in Linux. It is convenient

to have one introspection application script that is useful for

every guest of a major class instead of requiring new

compiled versions for every kernel upgrade. This could be

partially mitigated by having a just-in-time (JIT) compilation

system, but this still would not mitigate the second problem:

that of pointer translation. We map guest kernel memory into

the min-c address space on the host using Linux's mmap.

Our interpreter properly converts pointer values from

addresses on the guest to addresses in the min-c address

space. Because the introspection library does not allow us to

specify a target address for mmap, we cannot calculate this

address ahead of time. We could fix this with more

complicated logic in a JIT compiled approach if greater

performance is required.

Fourth, min-c is strictly a C interpreter. It does not

interpret C++ code, nor can it import C++ datatypes (classes)

for either Linux or Windows. This is acceptable for our

current applications because the target is the kernel, which is

typically written in C.

B. Future Work

Our min-c interpreter is still incomplete. There are still

several features we believe will make it more useful.

Two features would enhance min-c for both digital

forensics use and VMI:

JIT Compilation

We plan to port min-c to the LLVM framework [11].

LLVM is a toolkit for writing interpreters, virtual machines,

and compilers. LLVM would vastly increase performance

and allow us to support many languages.

OS Fingerprinting

At the moment, the operator must specify the correct

version and patch level for the guest in order for the

interpreter to identify the appropriate .pdb or .tu files needed

to interface with it. We intend to automate this so that

version information is automatically deduced by min-c on

startup. On Linux, this information is usually available in the

/proc/version file and is represented in memory by the

init_uts_ns variable. Unfortunately, this variable's address

differs by version and configuration, so it is not

straightforward locate it and perform the check. The process

is easier on Windows because the executable files themselves

store the name and version of the associated .pdb file. It is a

simple manner to parse the executable on disk to correctly

identify the correct .pdb file. Pagel has described an effective

method for fingerprinting Windows [12]. This is particularly

important for digital forensics. While it is likely that

operators will know what operating systems are running in

their VMs, forensics investigators often receive images with

no other information describing them.

Three other potential features would be VMI specific, and

would require modifications to the hypervisor or XenAccess

layer:

Synchronized Access

Access to many OS data structures is synchronized using

locks. If a structure is locked (being modified) when we

attempt to read it, it may be in an inconsistent state, causing

our interpreter to make incorrect semantic interpretations. An

appealing approach is to lock the data structures from the

interpreter, allowing us to properly access these extended data

structures. Our interim method is to pause the guest and

check that the data structure is unlocked. If so, we read it,

otherwise we briefly execute the VM and try again. Note that

this procedure can act as a spin lock.

Memory Access Alerts

A highly desirable feature would be the ability to raise an

alert when the guest writes to, reads from, or executes within

a specified address range. This alert could cause the

execution of an arbitrary script. It would also obviate the

need for polling and enable EXAMIN's integrity tools to

immediately discover when changes are occurring and

prevent rather than detect intrusions. Memory alerts on read

or execute operations could act as breakpoints, allowing min-

c to operate as a scriptable debugger. VMware's VMSafe

introspection library supports memory triggers, but requires

that a VM be booted in a special introspection mode [13]. It is

impossible to start or stop monitoring during VM execution.

We prefer XenAccess's ability to start and stop monitoring of

any VM at any time.

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

Replay

Finally, we consider the ability to rollback execution of the

guest to any point in the past to allow examiners, when

anomalies are discovered, to hunt down their origins. This

would be similar to the ReVirt system [14], but with usability

perhaps more similar to UndoDB [15].

V. RELATED WORK

Most research on the semantic gap is specific to VMI. The

Volatility project appears to be the basis of digital forensics

research on volatile memory research. There has been recent

work towards automated generation of this OS library. Case,

Marziale, and Richard [16] demonstrated automatic

generation of the Volatility OS library using .pdb files.

Okolica and Peterson [17] use a similar strategy. Our work is

more general, in that we also enable specification using C,

which allows us to support Linux and other operating

systems. The C preprocessor in particular allows us to

support multiple OSs in a compact, clear way.

The VMI techniques described in this paper require access

to a guest VM's state via the hypervisor. The open source

project XenAccess [3] facilitates this process for the Xen

hypervisor, and VMware's VMsafe [18] provides access to

information from some of VMware's hypervisors. Both

projects are fairly young and do little more than acquire the

state of virtual hardware and do little to bridge the semantic

gap with the guest OS, although XenAccess includes some

sample modules that interpret structures in kernel memory.

The problem of creating high-level semantics from low-

level hardware information acquired by VM introspection was

identified by Chen and Noble [1], who applied the term

―semantic gap.‖ An early solution for bridging the semantic

gap was implemented by Garfinkel and Rosenblum [19] in

their Livewire prototype. The approach used a Linux crash

dump analysis tool [20] as an ―OS interface library.‖

However, this approach applies only to kernels which have

been compiled using non-standard flags (including debug

symbols). Our approach allows us to run the same kernels

that ship with standard Linux distributions, without requiring

recompilation. Also, their tools are specific to Linux while

our approach works with Windows kernels as well.

Many techniques useful in VM introspection are common

to digital forensics. Several toolkits have been written that

interpret physical memory images. Toolkits include idetect

[21], Windows Memory Forensic Toolkit [22], the Volatility

Framework [8], VADTree [23] and FATKit [24]. Others try

to search memory directly, without fully rebuilding semantic

representations. This is called ―memory carving‖; Schuster's

DFRWS '06 paper is an example [25]. Carving is typically

focused on a limited set of non-kernel datatypes and does not

deal with memory layout, and is therefore insensitive to

specific OS version and patch level. However, it is much less

capable than the previous approaches that try to bridge the

semantic gap by interpreting kernel structures, and therefore

only support a limited range of OSs.

A common technique to bridge the semantic gap is to

locate known structures in memory (by symbol table lookup,

access to source code, or by scanning memory for matches)

and then traverse and interpret these structures. This

technique is used by [26], [27], [28], [29], [30], and [31].

These efforts rely on the manual process of locating ``magic

numbers'' (structures addresses, their internal data types, and

relative offsets), and writing the equivalent of kernel code to

traverse and interpret them. Furthermore, this manual process

must be repeated for different kernels and kernel versions,

which frequently change due to new releases, patches, re-

compilation, etc. This challenge is acknowledged by Hoglund

[32] and Jiang et al. [2].

EXAMIN's feature set is similar to a research system built

by Jiang, Wang, and Xu [2]. Their paper also details the

difficulties in bridging the semantic gap, and describes a

solution known as ―guest view casting.‖ In their description

they state, ―Configuration variation over the same OS... adds

additional complexity to VM semantic view reconstruction.

However, the guest view casting methodology remains

effective despite these differences, as shown by our

evaluation...‖ This statement is technically true, but does not

reflect the considerable difficulties in building a general

approach that systematically monitors a range of guest types.

The methodology is effective, but tedious, time-consuming,

and requires that it be redone for every new version.

Most VM introspection research to date uses semantic

reconstruction of the guest's state to acquire information (e.g.,

module or process lists) or to integrity check static memory

structures. A more sophisticated use is to detect unauthorized

tampering with dynamic memory structures, but this is a

more challenging problem. Petroni's group tackles this

problem by implementing a high-level language for the

specification of ―security predicates‖ [33]. The language

allows them to specify constraints or invariants that indicate a

security fault if violated. Our work is similar in that it allows

us to monitor the guest with a high-level language. However,

we believe that using C's flexibility allows developers to

easily specify high-level invariants as well as work at the

lower level of direct memory access.

In min-c, we have used a strategy that allows developers to

create OS interface libraries automatically where symbols or

source are available, or in the easiest manual fashion through

specification in C. Recently machine learning (ML)

approaches have begun to emerge. Payne [34] and Dolan-

Gavitt [35] showed how classifiers could be trained to

recognize structures from multiple versions of Windows.

Kolbitsch et al. [36] have begun extracting algorithms from

raw binaries. We see min-c as complementary to ML. Where

source or symbols are available, automatic generation of the

OS interface is always preferable because of the error rate of

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

ML algorithms. Where it is not, algorithms that output C data

structures will allow developers to easily analyze, correct, and

store their output.

VI. CONCLUSION

We presented min-c, a C interpreter that bridges the

semantic gap problem facing applications of virtual machine

introspection and volatile memory forensics, and showed its

applications to VMI-specific security monitors. Like other

approaches to VMI, min-c provides tamper resistance by

moving security software out of a monitored VM and into the

host system. Unlike other approaches, existing security

monitor source code requires minimal changes because min-c

makes the VM introspection invisible to the code, interpreting

data structures and pointers appropriately during execution.

Our approach is general within major operating system

classes and automated to reduce the need for manual reverse

engineering, making it attractive to both forensics and VMI

applications. We believe this approach has great promise in

furthering the migration of security software from monitored

VMs to less vulnerable host systems and as a platform for

volatile memory forensics.

REFERENCES

[1] P. M. Chen, and B. D. Noble, ―When virtual is better than real,‖ in

Proceedings of the Eighth Workshop on Hot Topics in Operating

Systems (HOTOS ’01), Washington, DC, USA: IEEE Computer Society,

2001, p. 133.

[2] X. Jiang, X. Wang, and D. Xu, ―Stealthy malware detection through vmm-

based ‗out-of-the-box‘ semantic view reconstruction,‖ in CCS ’07:

Proceedings of the 14th ACM Conference on Computer and

Communications Security, Alexandria, VA, October 2007, pp. 128– 138.

[3] B. D. Payne, M. Carbone, and W. Lee, ―Secure and flexible monitoring of

virtual machines,‖ in Proceedings of the 23rd Annual Computer Security

Applications Conference (ACSAC 2007), Miami Beach, FL, December

2007, pp. 385-397.

[4] N. Sobo. Treetop [Online]. Available:

http://treetop.rubyforge.org/index.html.

[5] R. M. Stallman, and the GCC Developer Community, Using the GNU

Compiler Collection. Boston, MA, USA: GNU Press, 2003.

[6] Microsoft Corporation. Visual studio pdb files [Online]. Available:

http://msdn.microsoft.com/ en-us/library/yd4f8bd1(VS.71).aspx.

[7] S. B. Schreiber, Undocumented Windows 2000 Secrets. Upper Saddle

River, NJ, USA: Addison-Wesley, 2001.

[8] Volatile Systems. Volatility framework [Online]. Available:

https://www.volatilesystems.com/default/volatility.

[9] H. Inoue, F. Adelstein, and R. A. Joyce, ―Visualization in testing a volatile

memory forensics tool,‖ To be published at the 2011 Digital Forensics

Research Workshop, Aug 2011.

[10] B. Dolan-Gavitt, B. Payne, and W. Lee, ―Leveraging forensic tools for

virtual machine introspection,‖ Georgia Institute of Technology, Atlanta,

GA, USA, SCS Tech. Rep. GT-CS-11-05, 2011, pp. 1-6.

[11] C. Lattner, ―Llvm: An infrastructure for multi-stage optimization,‖

Master‘s thesis, Computer Science, University of Illinois at Urbana-

Champaign, Urbana, IL, USA, December 2002.

[12] B. Pagel, ―Automated virtual machine introspection for host-based

intrusion detection,‖ Master‘s thesis, Engineering and Management, Air

Force Institute of Technology, Wright-Patterson AFB, OH, USA, March

2009.

[13] VMware. Vmsafe partner program overview [Online]. Available:

http://www.vmware.com/technical-resources/security/vmsafe/

security_technology.html.

[14] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,

―Revirt: enabling intrusion analysis through virtual-machine logging and

replay,‖ in Proceedings of the 5th Symposium on Operating Systems

Design and Implementation (OSDI ’02), vol. 36, no. SI, pp. 211–224,

2002.

[15] Undo Software Ltd. Undodb - reversible debugging for linux [Online].

Available: http://www.undo-software.com/

[16] A. Case, L. Marziale, and G. G. Richard III, ―Dynamic recreation of kernel

data structures for live forensics,‖ in DFRWS ’10: The Proceedings of the

10th Annual Digital Forensic Research Workshop (DFRWS’10),

Portland, OR, USA, August 2010, pp. 41–47.

[17] J. Okolica, and G. L. Peterson, ―Windows operating systems agnostic

memory analysis,‖ in DFRWS ’10: The Proceedings of the 10th Annual

Digital Forensic Research Workshop (DFRWS’10), Portland, OR, USA,

August 2010.

[18] VMware. VMsafe security technology [Online]. Available:

http://www.vmware.com/ overview/security/vmsafe.html.

[19] T. Garfinkel, and M. Rosenblum, ―A virtual machine introspection based

architecture for intrusion detection,‖ in Proceedings of the Network and

Distributed Systems Security Symposium (NDSS ’03), 2003.

[20] Mission Critical. Linux. Crash core analysis suite utility [Online].

Available: http://oss.missioncriticallinux.com/projects/crash/.

[21] M. Burdach. (2005, July 11). Digital forensics of the physical memory

[Online]. Available: http://forensic.seccure.net/pdf/mburdach_digital_

forensics_of_physical_memory.pdf

[22] M. Burdach. (2005, July 9). An introduction to windows memory forensics

[Online]. Available: http://forensic.seccure.net/pdf/

introduction_to_windows_memory_forensic.pdf

[23] B. Dolan-Gavitt, ―The vad tree: A process-eye view of physical memory,‖

in Proceedings of the 8th Digital Forensic Research Workshop (DFRWS

’07), Pittsburg, PA, USA, August 2007, pp. 62–64.

[24] N. Petroni, A. Walters, T. Fraser, and W. Arbaugh, ―Fatkit: A framework

for the extraction and analysis of digital forensic data from volatile system

memory,‖ Digital Investigation, the International Journal of Digital

Forensics and Incident Response, vol. 3, no. 4, pp. 197-210, December

2006.

[25] A. Schuster, ―Searching for processes and threads in microsoft memory

dumps,‖ in Proceedings of the 7th Digital Forensic Research Workshop

(DFRWS ’06), Lafayette, IN, USA, August 2006, pp. 10–16.

[26] F. D. Baiardi, and S. Sgandurra, ―Building trustworthy intrusion detection

through vm introspection,‖ in Proceedings of the 3rd IEEE International

Symposium on Information Assurance and Security (IAS ’07),

Manchester, UK, August 2007, pp. 209-214.

[27] M. Bergdal, and T. A. Sorby, ―Using virtual machines for integrity

checking,‖ Master‘s thesis, Informatics, University of Oslo, Oslo, Norway,

2007.

[28] X. Jiang, and X. Wang, ―‗Out-of-the-box‘ monitoring of VM-based high-

interaction honeypots,‖ in Proceedings of the 10th International

Symposium on Recent Advances in Intrusion Detection(RAID ’07),

Queensland, Australia, September 2007, pp. 198-219.

[29] R. Jones. Virt-mem: Tools for monitoring virtual machines [Online].

Available: http://et.redhat.com/~rjones/virt-mem.

[30] N. Petroni, T. Fraser, and W. Arbaugh, ―Copilot—a coprocessor-based

kernel runtime integrity checker,‖ in Proceedings of the 13th USENIX

Security Symposium (SSYM’04), San Diego, CA, USA, Aug 2004, pp.

179-194.

[31] R. Riley, X. Jiang, and D. Xu, ―Guest-transparent prevention of kernel

rootkits with vmm-based memory shadowing,‖ in Proceedings of the 11th

International Symposium on Recent Advances in Intrusion Detection

(RAID ’08), Cambridge, MA, USA, pp. 1-20.

[32] G. Hoglund, ―DARPA: Rootkit detection,‖ HBGary, Tech. Rep., 2007.

[33] N. Petroni, T. Fraser, A. Walters, and W. Arbaugh, ―An architecture for

specification-based detection of semantic integrity violations in kernel

dynamic data,‖ in Proceedings of the 15th USENIX Security Symposium,

Vancouver, B.C., Canada, July/August 2006, pp. 289-304.

ANNUAL SYMPOSIUM ON INFORMATION ASSURANCE (ASIA), JUNE 7-8, 2011, ALBANY, NY

[34] B. D. Payne, ―Improving host-based computer security using secure active

monitoring and memory analysis,‖ Ph.D. dissertation, Computer Science,

Georgia Institute of Technology, Atlanta, GA, USA, 2010.

[35] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, ―Robust

signatures for kernel data structures,‖ in Proceedings of the 16th ACM

Conference on Computer and Communications Security, Chicago, IL,

USA, November 2009, pp. 566-577.

[36] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, ―Inspector gadget:

Automated extraction of proprietary gadgets from malware binaries,‖ in

Proceedings of the 31st IEEE Symposium on Security and Privacy,

Oakland, CA, USA, May 2010, pp. 29-44.

