
 

Abstract—We describe min-c, a C interpreter that solves the 

generalized problem of the “semantic gap”.  The semantic gap 

exists in virtual machine introspection (VMI) and in volatile 

memory forensics because there is not a native hardware 

environment.  For example, a pointer in a data structure in a 

process cannot be used without translation to a physical 

address, a function of the native hardware and operating 

system.  The usual solution is to build an OS interface library to 

provide the necessary translations.  This is brittle as it must 

constantly track OS versions.  Min-c solves this problem by 

enabling automatic generation of the OS interface library using 

native OS code itself, or debugging symbols when source is not 

available.  We describe the design of min-c and our method for 

automatically building the semantic interface database required 

for type interpretation for both Linux and Windows OSs. 

 

Index Terms—Forensic Memory Analysis, Virtual Machine 

Introspection, Semantic Gap, Volatile Memory, C Interpreter  

 

I. INTRODUCTION 

N volatile memory forensics and virtual machine 

introspection (VMI) it is necessary to interpret, at a high 

level, the state of a system which has only been recorded at a 

very low level.  Effective techniques for doing this are 

increasingly necessary.  Most forensics investigations 

currently are centered on non-volatile storage (hard disks).  

Hard disk capacities are enormous, however, and the use of 

encrypted file systems is increasing.  Volatile memory can 

often provide evidence, such as encryption keys, which makes 

analysis of non-volatile storage faster and easier. 

The motivation for VMI is quite different.  Sophisticated, 

stealthy malware (e.g., rootkits) can subvert operating 

systems entirely, disabling and hiding from the most 

sophisticated computer security software.  It is always 

possible for the malware to discover, disable, or hide from 

security software because it runs on the same machine. In 

light of this, many have proposed and demonstrated 

approaches based on VMI.  This ―out-of-the-box‖ technique  
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allows security software to run in a trusted environment 

completely outside the OS and the applications it observes. 

Both techniques require one machine to interpret the low 

level state of another machine.  VMI applications (we refer to 

the VM hosting the introspecting application as the host) use 

the hypervisor to directly access the state of another VM's 

(the guest) virtual hardware, including the processor, 

memory, and devices (e.g., disk and network).  In volatile 

memory forensics, the available resource is a core-dump or 

raw memory image.1 The difficulty in interpreting this low-

level data into a high-level model of the guest system's state is 

referred to as the semantic gap [1]. 

The two research communities focusing on this problem 

have, until recently, been quite distinct.  However, we noticed 

in the course of our VMI research that the problem posed by 

VMI is identical to that posed in forensics.  The goal of our 

research was to develop a model of the guest's kernel memory 

space using the semantics of its operating system – the 

common problem in forensics and VMI.  VM introspection 

libraries supply processor state, and accessing the file system 

is fairly straightforward [2].  Network operations can also be 

captured and interpreted easily from outside the VM.  The 

VMI problem is more difficult in that it must not cause side-

effects within the guest, and it must also run efficiently, so 

that real-time monitoring is possible.  We therefore 

concentrate on VMI in this paper, although our technique 

applies generally to volatile memory forensics as well. 

Others (described in Section V) have addressed the 

semantic gap problem but each proposed solution has 

limitations.  Operating systems may be categorized into major 

classes (e.g., Windows XP, Vista, Linux 2.4, Linux 2.6), but 

there is significant variation within each major class that 

previous efforts do not address.  First, they do not account for 

versioning.  Modern operating systems are patched quite 

frequently, requiring either modification or at the very least, 

recompilation, of the introspection software.  Second, in open 

source operating systems such as Linux, kernels are 

customized by distributions or even by individuals 

themselves. 

Due to these two factors, the semantic gap-bridging software 
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 For the purposes of this paper, we will refer to the analysis machine as the 
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Fig. 1.   A comparison of a security monitor using VM introspection with min-c (left) and similar software hosted in the traditional manner (right). 

of previous efforts have been prototype implementations 

written for specific kernel versions that are brittle in the face 

of changes to those kernels.  In addition, each previous effort 

required manual labor to acquire detailed knowledge of each 

guest's data types (including the fields of aggregate types) and 

magic numbers (i.e., memory locations, including relative 

offsets within aggregate types).  This manual labor can 

include inspection of available files (e.g., symbol tables, 

header files, source code), reverse engineering, kernel 

debugging, and trial-and-error coding.  For example, 

Volatility [8], the most popular tool for volatile memory 

forensics, only supports Windows XP; it does not yet support 

Windows Vista or Windows 7. 

Based on the shortcomings of previous efforts, we 

determined that a useful solution for bridging the semantic 

gap should be both general and automatic.  That is, it should 

enable us to run any version or distribution of a major OS 

class without recompilation of the introspection code and 

without the need for manual intervention in the process. 

Finally, a solution that bridges the semantic gap should 

minimize the distinction between guest and host.  It should be 

easy to reuse and port security software.  Developers should 

not need to learn an introspection API or language, as 

previous solutions have required.  In short, we want our 

introspection layer to be invisible—host code should look and 

run as if it were in the guest. 

Given these desiderata, we implemented a C interpreter, 

linked with an introspection library.  It currently runs a large 

subset of the C90 standard.2 

In addition, we have generated semantic reconstruction 

libraries that allow us to automatically locate and properly 

interpret data structures in both the Linux and Windows 

kernels.  We call our semantic gap-bridging software min-c, 

which integrates our C interpreter and semantic 

reconstruction libraries. Fig. 1 shows how we use 

introspection and min-c to achieve our objectives and 

compares them to traditional non-introspective security 

software running inside a guest. 

Min-c is an abbreviation for ―EXAMIN-C.‖  EXAMIN is a 

commercial project with the goal of developing a testing 

platform for containing, triggering, analyzing, and reverse 

engineering stealthy malware.  It is a VM-based workbench 

based on the Xen hypervisor that employs VM introspection 

to provide high-assurance detection of stealthy malware on 

both Windows and Linux platforms.  EXAMIN incorporates a 

number of practical tools based on our introspection  

 
2
 C90 was chosen for its ease of implementation.  We may switch to C99 in 

the future.  The interpreter does not currently support some data types, such as 

ones we have not encountered in the Linux and Windows kernels (e.g., floating 

point). 
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Fig. 2.   Memory layout of a min-c application.  Interpreter translates pointers by subtracting map offset stored in address map from pointers in mapped regions. 

 

techniques, including integrity monitors and cross-view 

checkers. 

Min-C forms the core of EXAMIN.  In the rest of the 

paper, we describe how min-c solves the various problems 

involved in practical VM introspection and bridging the 

semantic gap.  We begin by presenting our min-c design. We 

first describe how we automate the gathering of kernel-

specific semantic information and then how we integrate this 

information with our C interpreter.  Next, we describe our 

current applications of min-c.  Finally we discuss the 

limitations of our approach and describe future and related 

work before concluding the paper. 

II. DESIGN 

The min-c interpreter consists of the following four 

components, each of which we subsequently describe in 

detail: 

1. the introspection library, 

2. the C parser, 

3. the core interpreter, and 

4. the semantic interpreters. 

We used the open source XenAccess library to provide VM 

introspection of the Xen hypervisor [3].  We modified 

XenAccess to provide the ability to memory map a range of 

contiguous virtual memory from the guest into the host's 

address space.  This is the principal introspection mechanism.  

XenAccess also provides access to files, enabling volatile 

memory forensics investigations as well. 

We built the C parser with the aid of the TreeTop parsing 

library for the Ruby programming language [4].  The C 

parser reads in the source text and generates custom bytecode.  

Our parser performs type checking, but our custom bytecode 

instruction set does not embed type information such as size 

or offset information.  Instead, type information is retrieved 

(for host datatypes) or calculated (for guest datatypes) during 

execution, because the version of the OS is not determined 

until runtime. 

The core interpreter executes the bytecode generated by the 

parser.  It uses the XenAccess library to map guest kernel 

memory into the host's address space and then operates on 

that memory similar to the way it operates on unmapped 

memory.  The only exception is in the use of pointers:  the 

address space mapped into the host makes pointers 

inconsistent.  A variable referred to by a pointer in the guest 

has a different address on the host.  The min-c interpreter 

keeps track of which portions of memory are mapped in from 

the guest and translates pointer addresses appropriately. 

Fig. 2 shows how the map of the physical memory of guest 

OS is mapped into the process space of min-c.  In the figure, 

the OS memory is contiguous in physical memory, which is 

usually the case.  It is also possible to map the virtual address 

space of a user process, which is usually not physically 

contiguous, into a min-c application.  A min-c application has 

five  

logical memory areas:  the mapped memory from the guest, 

the min-c interpreter itself, the min-c application's code (local 

code), its heap (local data), and the address map. 

The address map is used by the interpreter to translate 

pointer addresses.  It is a table which describes the mapping 

between the virtual address space of the guest and the virtual 

address space of the min-c application. When a min-c 

application reads a pointer, the interpreter consults the table 

to determine if it is in a guest-mapped space.  If it is, then the 

pointer is read from the mapped space and then the map 

offset between the two spaces is added so that the new pointer 

is accurate.  Note that the interpreter must understand that the 

value being read is a pointer.  Applications that treat pointers 

as integers will not have these values properly translated.  

Thus, developers need to take particular care with types or 

memory corruption will immediately result. 

Our semantic interpreters provide type and layout 

information for data structures within the guest.  Semantic 

view reconstruction begins with an address and a type.  If we 

have information about the type, we can then understand the 

region of memory specified by the address in terms of 

operating system semantics.  If the type contains a pointer, we 

can then recursively apply this procedure to the address and 

type referred to by the pointer.  In this way, we can rebuild 

the semantic meaning of the address space within the guest. 

In Section V, we describe the manual and debugger-

oriented procedures previous efforts have used to generate a 

semantic view of the guest's memory.  As discussed in Section 

I, the procedures used in previous efforts are brittle and 

difficult to use with heterogeneous systems.  In order for our 

semantic interpreters to automatically reconstruct a semantic 

view of the observed guest kernel, we need the data structure 

layout created by the compiler.  For Linux, compiling the 
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observed kernel with debug symbols would give us access to 

this information, but unfortunately this would change the 

resulting image.  For Windows, source code is not available 

so recompilation is also not an option.  We extract the data 

structure information using a unique procedure for each 

major class of operating system, as follows. 

For Linux, the GCC compiler can output a kernel's 

intermediate representation as a flat file database (.tu) in text 

format using the --fdump-translation-unit flag [5].  Since 

source code and kernel configurations are available for each 

Linux distribution, we can recompile each kernel of interest 

in this manner a single time, and use the resulting .tu files for 

all subsequent introspection activities.  We do not need to 

replace the original guest kernel with the recompiled one 

because they are identical (We delete the recompiled one, 

saving only the .tu files generated by the compilation 

process).  The objective is to generate the equivalent of 

debugging information without having to compile the kernel 

with a debugging flag. The .tu files give us access to the type, 

size, and layout information needed to automate semantic 

view reconstruction.  Addresses are not available in the 

intermediate representation (these are generated by the 

linker), so we use the System.map file generated by the kernel 

compilation process (and usually exported in the /boot 

directory) to obtain them.  The System.map file gives us 

exported addresses, but does not give us other important 

addresses, such as the location of the system call table, which 

we obtain through forensic processes that are automatable for 

each major kernel version. 

For Windows, the compiler generates a Program DataBase 

file (.pdb) that contains the necessary symbol and type 

information [6].  An executable file (.exe or .dll) stores the 

name of its associated .pdb file as well as the version 

(specified by a globally unique identifier and age value).  

PDB files can be made available by an application developer, 

or in the case of Microsoft's executables (such as the 

Windows XP, Vista, and 7 kernels), are downloadable from 

Microsoft's Windows Symbol Server.  Dynamic Link 

Libraries (DLLs) export public symbols for use by other 

applications but non-public symbols are stripped out during 

the compilation process.  PDB files contain both public and 

private symbol information, such as addresses, as well as 

function signatures and their locations.  Addresses are stored 

as Relative Virtual Addresses (RVAs) that are simply offsets 

from the start of the file when loaded into memory [7].  PDB 

files also contain data type information similar to that 

available in Linux .tu files. 

Not all relevant information is provided by PDB files.  

Many internal data structures are not described, nor are many 

addresses which are useful for VMI or forensics.  When 

structures or addresses are not available, developers in min-c 

can supplement this with files written in C.  This is a key 

advantage of min-c, since it allows developers to augment the 

interface library and analysis scripts in the same language 

they use to write native OS code itself, and in a way that 

makes calls to the interface library implicit, as we show in the 

next Section. 

Fig. 1 shows how four parts (the introspection library, C-

parser, core interpreter, and semantic interpreter) compose 

the min-c interpreter and conduct semantics-aware VM 

introspection of a guest's kernel.  A complete program is 

created when min-c extracts, interprets, and combines the 

source code (.c) file with the semantic information database 

(.tu or .pdb) files. The core interpreter uses local resources to 

execute, but redirects introspection queries to the guest via 

XenAccess.  It accomplishes this by tracking and maintaining 

consistency of separate data types and pointers for each 

domain. 

 

III. CURRENT APPLICATIONS 

We currently use min-c within our EXAMIN platform for 

TABLE I 

PROGRAMS FOR LISTING LOADED MODULES                                                               

WITHIN A GUEST VM RUNNING LINUX 2.6 KERNEL 

XenAccess Specific Partial Listing 

xa_read_long_sym(&xai, ―module‖, &next_module; 

list_head = next_module; 

 

while(1) { 

    memory=xa_access_virtual_address(&xai, next_module, &offset); 

    if(memory == NULL) { 

        perror(―failed to map memory for module list pointer‖); 

        goto error_exit; 

    } 

    memcpy(&next_module, memory+offset, 4); 

 

    if(list_head == next_module) 

        break; 

 

    /* Note – the module struct that we are looking at has a string directly 

following the next/prev pointers.  This is why you can just add 8 to get the 

name.  See include/linux/module.h for more details. */ 

    name = (char *)(memory+offset+8); 

    printf(―%s\n‖, name); 

 

    munmap(memory, xai, page_size); 

} 

Min-c Equivalent 

/* Pull address from System.map */ 

 

extern struct list_head module* modules; 

struct list_head* next_module = modules; 

 

while(1) { 

    struct module tmp; 

    next_module = next_module->next; 

    if(modules == next_module) 

        break; 

 

    tmp = list_entry(next_module, struct module, list); 

    puts(tmp->name); 

    puts(―\n‖); 

} 

On the top is a partial source listing that uses only the XenAccess library. On 

the bottom is the mini-c version. Note: We ignore locking in this example. 
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cross-view checking and integrity checking.  Rootkits hide 

their presence from both user-space and kernel-space 

applications.  Cross-view checking tools compare the state of 

the guest as reported from within (the guest) with that 

reported from without (the host) using VM introspection.  

Differences often indicate that stealthy malware has infected 

the host.  

The min-c interpreter makes it much easier to write cross-

view checking tools.  To illustrate, consider Table I, which 

shows the listing for VM introspection code that outputs the 

list of modules running in a Linux system.  Using only the 

XenAccess VM introspection library, the code is awkward, 

and relies on hardcoded offsets for linked-list pointers and the 

name string.  Min-c, however, automatically reconstructs a 

guest kernel's datatypes and offsets, so its code is identical to 

that written for a kernel module.  It is shorter, easier to 

understand, easier to write, and will run on many different 

versions of Linux, since the structure is interpreted at 

runtime, instead of compiled. 

Our integrity checking tools monitor portions of the guest 

kernel's memory to detect tampering.  During execution, the 

kernel code and many of its variables should not change 

frequently after initialization.  For our EXAMIN 

implementation, integrity checking tools repeatedly poll code 

and selected structures, such as the system call table or 

interrupt descriptor table, for modification.  Changes can 

indicate a rootkit infection. 

Our integrity checking tools can also take advantage of 

min-c's semantic reconstruction capabilities.  Rather than 

simply detecting a change to a data structure, we can describe 

the change.  For example, when the system call table is 

―hooked,‖ min-c can provide the name of the specific call that 

was altered and locate the memory space to which it now 

points. 

 

IV. DISCUSSION 

The min-c interpreter effectively achieves our goals; it 

automatically bridges the semantic gap in a manner that is 

general to major kernel classes.  Users do not have to learn a 

new API or language, and can use the native language (C) of 

the operating system to write scripts that look like kernel code 

running in the guest.   

We have rewritten the larger examples provided with 

XenAccess in min-c style.3  We have scripts identical to code 

written for the kernel, which execute properly for multiple 

versions of Windows and Linux.  Our scripts list current 

processes and drivers (modules in Linux).  We have 

developed cross-checkers for the system call tables for 

Windows and Linux which will inform administrators when 

the system call table has been modified, and which system 

 
3
 The minor examples supplied by Xen Access are implicitly provided by 

min-c functionality. 

calls have been hooked, which can help identify which rootkit 

is responsible. 

This functionality forms the basis of our EXAMIN system, 

which is intended as a malware incubator.  We can easily 

write new monitoring scripts for the system.  Debugging is 

quite easy; we find that we can write Windows drivers and 

Linux modules to monitor kernel state directly, and then run 

them in min-c. 

EXAMIN is clearly beneficial as a security and reverse 

engineering tool.  It also can be useful as a tool to aid digital 

forensic analysis, in particular analysis involving live systems 

and volatile data, such as live memory.  The interest in live 

memory analysis is growing rapidly, and while many 

advances have been made in recent years, there are relatively 

few tools to bridge the semantic gap. 

Volatility [8] is probably the best known tool to conduct 

memory analysis, but until recently it relied on a pre-existing 

memory image.  Simply getting the memory image can be 

challenging [9]. We became aware during the implementation 

of min-c that the Georgia Tech group responsible for 

XenAccess added hooks that enable Volatility to access live 

VMs, giving it similar introspective capabilities to min-c 

[10]. Similarly, XenAccess also supports access to memory 

dump files.  While Volatility currently has more analysis tools 

than min-c, we believe that the min-c approach is superior 

because new tools for Volatility must be written in Python 

and use explicit translation libraries.  Min-c can make writing 

new tools much easier.  New system analysis tools will use or 

reuse code that is almost identical to the equivalent kernel C 

code.  It also allows a single tool to target multiple versions of 

an OS, because the interpreter links in the appropriate 

translation library at runtime.  With Volatility, this is not 

possible. 

Because EXAMIN uses VM introspection, it has essentially 

no impact on the running system and is very unobtrusive.  

These qualities are highly desirable for forensic analysis [9]. 

EXAMIN can help analysts conduct an investigation of a 

running system to find data that may only reside in memory, 

or may locate data that are essential for a traditional disk 

analysis, such as whole-disk encryption keys, whose absence 

render the data on a disk useless. 

A. Limitations 

There are still several limitations to min-c that hinder its 

application to other problems. 

First, we cannot read guest memory that is paged out to 

disk.  This is not a problem with our current EXAMIN 

objective of kernel monitoring because kernel memory for the 

kernel structures that are required by our tools is never paged 

out.4  To monitor guest memory for user-space applications 

would require modification of the guest: injecting code to 

induce page faults, causing the desired application pages to be 

read back into core.  Although this is possible, our current 

 
4
 Volatility does not have this ability, either. 
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goals are to perform introspection without directly tampering 

with the guest, allowing security services to remain invisible. 

Currently, no volatile forensics applications support 

examination of paged-out memory, either. It may be more 

straightforward to implement support for this for forensics, 

where everything is on a file system, than on an executing 

system where memory and the file system monitoring must 

maintain consistency. 

Also, because our introspection method is based on polling, 

we cannot detect changes when they are quickly reversed.  

This possibility becomes less likely if our scripts poll more 

often, but the cost is decreased performance.  We can fix this 

problem using memory access alerts (Section IV-B), but this 

will require modifications to the Xen hypervisor. 

Because persistent malware is much more likely to be 

detected through file system virus checkers or similar 

software, we believe memory-only rootkits are becoming more 

common, and the min-c approach is most effective against 

them. 

Third, the performance of min-c is limited by the fact it is 

interpreted rather than compiled.  There are two reasons for 

choosing to run interpreted.  First, data structure layout 

differs depending on patch-level in Windows and kernel 

configuration and compiler version in Linux.  It is convenient 

to have one introspection application script that is useful for 

every guest of a major class instead of requiring new 

compiled versions for every kernel upgrade.  This could be 

partially mitigated by having a just-in-time (JIT) compilation 

system, but this still would not mitigate the second problem: 

that of pointer translation.  We map guest kernel memory into 

the min-c address space on the host using Linux's mmap.  

Our interpreter properly converts pointer values from 

addresses on the guest to addresses in the min-c address 

space.  Because the introspection library does not allow us to 

specify a target address for mmap, we cannot calculate this 

address ahead of time.  We could fix this with more 

complicated logic in a JIT compiled approach if greater 

performance is required. 

Fourth, min-c is strictly a C interpreter.  It does not 

interpret C++ code, nor can it import C++ datatypes (classes) 

for either Linux or Windows.  This is acceptable for our 

current applications because the target is the kernel, which is 

typically written in C. 

B. Future Work 

Our min-c interpreter is still incomplete.  There are still 

several features we believe will make it more useful. 

Two features would enhance min-c for both digital 

forensics use and VMI: 

 

JIT Compilation  

We plan to port min-c to the LLVM framework [11].  

LLVM is a toolkit for writing interpreters, virtual machines, 

and compilers.  LLVM would vastly increase performance 

and allow us to support many languages. 

 

OS Fingerprinting 

At the moment, the operator must specify the correct 

version and patch level for the guest in order for the 

interpreter to identify the appropriate .pdb or .tu files needed 

to interface with it.  We intend to automate this so that 

version information is automatically deduced by min-c on 

startup. On Linux, this information is usually available in the 

/proc/version file and is represented in memory by the 

init_uts_ns variable.  Unfortunately, this variable's address 

differs by version and configuration, so it is not 

straightforward locate it and perform the check.  The process 

is easier on Windows because the executable files themselves 

store the name and version of the associated .pdb file.  It is a 

simple manner to parse the executable on disk to correctly 

identify the correct .pdb file.  Pagel has described an effective 

method for fingerprinting Windows [12]. This is particularly 

important for digital forensics.  While it is likely that 

operators will know what operating systems are running in 

their VMs, forensics investigators often receive images with 

no other information describing them. 

 

Three other potential features would be VMI specific, and 

would require modifications to the hypervisor or XenAccess 

layer: 

 

Synchronized Access 

Access to many OS data structures is synchronized using 

locks.  If a structure is locked (being modified) when we 

attempt to read it, it may be in an inconsistent state, causing 

our interpreter to make incorrect semantic interpretations. An 

appealing approach is to lock the data structures from the 

interpreter, allowing us to properly access these extended data 

structures.  Our interim method is to pause the guest and 

check that the data structure is unlocked. If so, we read it, 

otherwise we briefly execute the VM and try again.  Note that 

this procedure can act as a spin lock. 

 

Memory Access Alerts 

A highly desirable feature would be the ability to raise an 

alert when the guest writes to, reads from, or executes within 

a specified address range.  This alert could cause the 

execution of an arbitrary script.  It would also obviate the 

need for polling and enable EXAMIN's integrity tools to 

immediately discover when changes are occurring and 

prevent rather than detect intrusions.  Memory alerts on read 

or execute operations could act as breakpoints, allowing min-

c to operate as a scriptable debugger. VMware's VMSafe 

introspection library supports memory triggers, but requires 

that a VM be booted in a special introspection mode [13]. It is 

impossible to start or stop monitoring during VM execution. 

We prefer XenAccess's ability to start and stop monitoring of 

any VM at any time. 
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Replay  

Finally, we consider the ability to rollback execution of the 

guest to any point in the past to allow examiners, when 

anomalies are discovered, to hunt down their origins. This 

would be similar to the ReVirt system [14], but with usability 

perhaps more similar to UndoDB [15]. 

 

V. RELATED WORK 

Most research on the semantic gap is specific to VMI.  The 

Volatility project appears to be the basis of digital forensics 

research on volatile memory research.  There has been recent 

work towards automated generation of this OS library.  Case, 

Marziale, and Richard [16] demonstrated automatic 

generation of the Volatility OS library using .pdb files.  

Okolica and Peterson [17] use a similar strategy.  Our work is 

more general, in that we also enable specification using C, 

which allows us to support Linux and other operating 

systems.  The C preprocessor in particular allows us to 

support multiple OSs in a compact, clear way. 

The VMI techniques described in this paper require access 

to a guest VM's state via the hypervisor.  The open source 

project XenAccess [3] facilitates this process for the Xen 

hypervisor, and VMware's VMsafe [18] provides access to 

information from some of VMware's hypervisors.  Both 

projects are fairly young and do little more than acquire the 

state of virtual hardware and do little to bridge the semantic 

gap with the guest OS, although XenAccess includes some 

sample modules that interpret structures in kernel memory. 

The problem of creating high-level semantics from low-

level hardware information acquired by VM introspection was 

identified by Chen and Noble [1], who applied the term 

―semantic gap.‖  An early solution for bridging the semantic 

gap was implemented by Garfinkel and Rosenblum [19] in 

their Livewire prototype.  The approach used a Linux crash 

dump analysis tool [20] as an ―OS interface library.‖  

However, this approach applies only to kernels which have 

been compiled using non-standard flags (including debug 

symbols).  Our approach allows us to run the same kernels 

that ship with standard Linux distributions, without requiring 

recompilation. Also, their tools are specific to Linux while 

our approach works with Windows kernels as well. 

Many techniques useful in VM introspection are common 

to digital forensics.  Several toolkits have been written that 

interpret physical memory images.  Toolkits include idetect 

[21], Windows Memory Forensic Toolkit [22], the Volatility 

Framework [8], VADTree [23] and FATKit [24].  Others try 

to search memory directly, without fully rebuilding semantic 

representations.  This is called ―memory carving‖; Schuster's 

DFRWS '06 paper is an example [25].  Carving is typically 

focused on a limited set of non-kernel datatypes and does not 

deal with memory layout, and is therefore insensitive to 

specific OS version and patch level.  However, it is much less 

capable than the previous approaches that try to bridge the 

semantic gap by interpreting kernel structures, and therefore 

only support a limited range of OSs. 

A common technique to bridge the semantic gap is to 

locate known structures in memory (by symbol table lookup, 

access to source code, or by scanning memory for matches) 

and then traverse and interpret these structures. This 

technique is used by [26], [27], [28], [29], [30], and [31].  

These efforts rely on the manual process of locating ``magic 

numbers'' (structures addresses, their internal data types, and 

relative offsets), and writing the equivalent of kernel code to 

traverse and interpret them. Furthermore, this manual process 

must be repeated for different kernels and kernel versions, 

which frequently change due to new releases, patches, re-

compilation, etc.  This challenge is acknowledged by Hoglund 

[32] and Jiang et al. [2]. 

EXAMIN's feature set is similar to a research system built 

by Jiang, Wang, and Xu [2].  Their paper also details the 

difficulties in bridging the semantic gap, and describes a 

solution known as ―guest view casting.‖  In their description 

they state, ―Configuration variation over the same OS... adds 

additional complexity to VM semantic view reconstruction.  

However, the guest view casting methodology remains 

effective despite these differences, as shown by our 

evaluation...‖  This statement is technically true, but does not 

reflect the considerable difficulties in building a general 

approach that systematically monitors a range of guest types. 

The methodology is effective, but tedious, time-consuming, 

and requires that it be redone for every new version. 

Most VM introspection research to date uses semantic 

reconstruction of the guest's state to acquire information (e.g., 

module or process lists) or to integrity check static memory 

structures.  A more sophisticated use is to detect unauthorized 

tampering with dynamic memory structures, but this is a 

more challenging problem.  Petroni's group tackles this 

problem by implementing a high-level language for the 

specification of ―security predicates‖ [33].  The language 

allows them to specify constraints or invariants that indicate a 

security fault if violated.  Our work is similar in that it allows 

us to monitor the guest with a high-level language.  However, 

we believe that using C's flexibility allows developers to 

easily specify high-level invariants as well as work at the 

lower level of direct memory access. 

In min-c, we have used a strategy that allows developers to 

create OS interface libraries automatically where symbols or 

source are available, or in the easiest manual fashion through 

specification in C.  Recently machine learning (ML) 

approaches have begun to emerge. Payne [34] and Dolan-

Gavitt [35] showed how classifiers could be trained to 

recognize structures from multiple versions of Windows.  

Kolbitsch et al. [36] have begun extracting algorithms from 

raw binaries. We see min-c as complementary to ML.  Where 

source or symbols are available, automatic generation of the 

OS interface is always preferable because of the error rate of 
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ML algorithms. Where it is not, algorithms that output C data 

structures will allow developers to easily analyze, correct, and 

store their output. 

 

VI. CONCLUSION 

We presented min-c, a C interpreter that bridges the 

semantic gap problem facing applications of virtual machine 

introspection and volatile memory forensics, and showed its 

applications to VMI-specific security monitors.  Like other 

approaches to VMI, min-c provides tamper resistance by 

moving security software out of a monitored VM and into the 

host system. Unlike other approaches, existing security 

monitor source code requires minimal changes because min-c 

makes the VM introspection invisible to the code, interpreting 

data structures and pointers appropriately during execution.  

Our approach is general within major operating system 

classes and automated to reduce the need for manual reverse 

engineering, making it attractive to both forensics and VMI 

applications.  We believe this approach has great promise in 

furthering the migration of security software from monitored 

VMs to less vulnerable host systems and as a platform for 

volatile memory forensics. 
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